Câu hỏi:

11/07/2024 30,072

Kim tự tháp Keop – Ai cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là các tam giác cân chung đỉnh. Mỗi cạnh bên của kim tự tháp dài 214m, cạnh đáy của nó dài 230m.

a)       Tính theo mét chiều cao h của kim tự tháp (làm tròn đến số thập phân thứ nhất)

b)      Cho biết thể tích của hình chóp được tính theo công thức V=13S.h  , trong đó S là diện tích mặt đáy, h là chiều cao của hình chóp. Tính theo m3 thể tích của kim tự tháp (làm tròn đến hàng nghìn)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Kim tự tháp Keop – Ai cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là các tam giác cân chung đỉnh. Mỗi cạnh bên của kim tự tháp dài 214m, cạnh đáy của nó dài 230m. a)	Tính theo mét chiều cao h của kim tự tháp (làm tròn đến số thập phân thứ nhất) b)	Cho biết thể tích của hình chóp được tính theo công thức   , trong đó S là diện tích mặt đáy, h là chiều cao của hình chóp. Tính theo m3 thể tích của kim tự tháp (làm tròn đến hàng nghìn) (ảnh 1)

a)      Vì ABCD là hình vuông  AC=AD2=230.2

AO=AC2=23022=1152 

Tam giác SAO vuông tại O nên áp dụng Pytago ta có:

 AO2+SO2=SA2

 hay11522+h2=2142h=214211522139,1

b)      T a có diện tích mặt đáy là:  230.230=52900(m2)

Thể tích của kim tự tháp là V=13Sh=13.52900.139,12453000(m2)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E. a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh: CA.CK = CE.CH. c) Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác  cân. d) Khi KE = KC. Chứng minh rằng: OK // MN. (ảnh 1)

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.

Ta có :  AHE^=900

AKB^=900  AHE^+AKB^=1800                  (1)

Hai góc AHE^,AKB^  đối nhau           (2)

Từ (1), (2) ta có tứ giác AHEK nội tiếp đường tròn đường kính AE.

b) Chứng minh: CA.CK = CE.CH.

Do tứ giác AHEK nội tiếp nên   HAK^=KEN^   

 chung và HAK^=KEN^    AHC^=EKC^=900     

nên CKCH=CECACK.CA=CH.CE

c)Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.

            Do KB // FN nên    EKN^=KNF^,MKB^=KFN^                       (3)

MKB^=EKN^  (góc nội tiếp cùng chắn cung bằng nhau)      (4)

(3), (4) KNF^=KFN^   nên tam giác KFN cân tại K.

d) Khi KE = KC. Chứng minh rằng: OK // MN.

Ta có  vuông tại K.

mà KE = KC nên tam giác KEC vuông cân tại K KEC^=450

OAK^=OKA^=KEC^=450AOK^=900 hay

MNAB  nên OK //MN

 

Lời giải

Áp dụng Pitago vào tam giác vuông

AB2=AH2+BH2AH2=AB2BH2=5232=16AH=4(cm).

Áp dụng hệ thức lượng vào tam giác vuông ABCAH2=BH.CHCH=AH2BH=163cm

Do đó BC=BH+CH=3+163=253cm

Áp dụng Pitago vào tam giác vuông ABC AC2=CH.BC=163253=4009AC=203cm)

sinCAH^=CHCA=163:203=45

Cho tam giác ABC vuông tại  A có đường cao AH  , biết AB=5cm, BH=3cm   . Tính AH, AC và  sin CAH. (ảnh 1)