Câu hỏi:

03/09/2022 992

Cho tứ giác ABCD   nội tiếp đường tròn (O;R) và có hai đường chéo AC, BD vuông góc với nhau tại I (I khác O) . kẻ đường kính CE

a, Chứng minh tứ giác ABDE   là hình thang cân

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD   nội tiếp đường tròn (O;R) và có hai đường chéo AC, BD vuông góc (ảnh 1)

a, Ta có: CAE^=900  (góc nội tiếp chắn nửa đường tròn) AEAC

BDAC(gt)AE//BD  (từ vuông góc đến song song)

Tứ giác ABDE là hình thang (Tứ giác có 2 cạnh đối song song)

Ta có:CDE^=900 (góc nội tiếp chắn nửa đường tròn) ΔCDE vuông tại D

Có:CED^=CBD^  (hai góc nội tiếp cùng chắn cung CD) 

900CED^=900CBD^DCE^=ACB^

Mà sdDE=sdAB  (hai góc nôi tiếp cùng chắn hai cung bằng nhau)

DE=ABDE+AE=AB+AEAD=BE

ABD^=EDB^ (hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau)

Tứ giác ABDE   là hình thang cân (hình thang có 2 góc kề 1 đáy bằng nhau)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a,x25x+4=0

Phương trình có dạng a+b+c=15+4=0  nên có hai nghiệm phân biệt: x1=1;x2=4.

Vậy S=1;4

Lời giải

a, Tìm nghiệm nguyên…..

TH1: Xét x2+x>0xx+1>0x>0x<1,  từ đó ta có 2x2+x>0

x3+x2+x+1<x3+x2+x+1+2x2+x=x3+3x2+3x+1=x+13x3<x3+x2+x+1<x+13

 

Theo đề bài ta có: y3=x3+x2+x+1

x3<y3<x+13, lại có x,y(gt)

Không tồn tại số nguyên  x,y thỏa mãn x3<y3<x+13

TH2: Xét 1x0,  lại có  x(gt)x=1x=0

+) Với x=1y3=13+121+1=0y=0(tm)

+)Với x=0y3=1y=1(tm)

Vậy phương trình có các cặp nghiệm nguyên là x;y=1;0;0;1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay