Cho C (3; –4), D (–1; 2). Biểu diễn vectơ \[\overrightarrow {CD} \] qua vectơ \(\overrightarrow i \) và vectơ \(\overrightarrow j \).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là : A
Ta có : \[\overrightarrow {CD} \] = (–1 – 3); 2 – (–4)) = (–4; 6).
Khi đó \[\overrightarrow {CD} = - 4\overrightarrow i + 6\overrightarrow j \].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là : C
Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {6;0} \right)\\\overrightarrow {AC} = \left( {0;6} \right)\end{array} \right.\]\[ \Rightarrow \]\[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] không cùng phương.
Lời giải
Hướng dẫn giải
Đáp án đúng là : C
Ta có :\[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 3; - 3} \right)\\\overrightarrow {AC} = \left( {6;6} \right)\end{array} \right.\], nhận thấy \[\overrightarrow {AC} = - 2\overrightarrow {AB} \]. Đẳng thức này chứng tỏ A ở giữa hai điểm B và C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.