Câu hỏi:

05/09/2022 258 Lưu

Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\]\[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:

A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a = 4\\4b = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\).

Vậy a = 2 và b = – 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. A, B, C trùng nhau ;
B. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] cùng phương ;
C. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] không cùng phương ;
D. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] bằng nhau.

Lời giải

Hướng dẫn giải

Đáp án đúng là : C

Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {6;0} \right)\\\overrightarrow {AC} = \left( {0;6} \right)\end{array} \right.\]\[ \Rightarrow \]\[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] không cùng phương.

Câu 2

A. A, B, C thẳng hàng ;
B. B ở giữa hai điểm A và C ;
C. A ở giữa hai điểm B và C ;
D. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] cùng hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là : C

Ta có :\[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 3; - 3} \right)\\\overrightarrow {AC} = \left( {6;6} \right)\end{array} \right.\], nhận thấy \[\overrightarrow {AC} = - 2\overrightarrow {AB} \]. Đẳng thức này chứng tỏ A ở giữa hai điểm B và C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. AB =(15;10);
BAB =(2;4);
C. \[\overrightarrow {AB} \]           = (5; 6);
D. \[\overrightarrow {AB} \] = (50; 16).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tứ giác ABCD là hình bình hành ;
B. A, B, C, D trùng nhau ;
C. \[\overrightarrow {AB} = \overrightarrow {CD} ;\]
D. \[\overrightarrow {AC} ,{\rm{ }}\overrightarrow {AD} \] cùng phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {CD} \] là hai vectơ trùng nhau;
B. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {CD} \] ngược hướng;
C. \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {CD} \] cùng hướng;
D. A, B, C, D trùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP