Câu hỏi:
06/09/2022 683Cho đường thẳng \[d:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\]. Đường thẳng nào sau đây trùng với đường thẳng d.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng \[d:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\]có VTCP là \(\overrightarrow {{u_d}} \) = (4; – 4) = 4.(1; – 1). Suy ra VTCP của đường thẳng d cũng là vectơ có tọa độ (1; – 1).
Với t = 1 thì \[\left\{ \begin{array}{l}x = - 3 + 4.1 = 1\\y = 2 - 4.1 = - 2\end{array} \right.\]. Do đó đường thẳng d đi qua điểm có tọa độ (1; – 2).
Vì vậy đường thẳng d trùng với đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + t'\\y = - 2 - t'\end{array} \right.\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?
Câu 6:
Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng:
Câu 7:
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
về câu hỏi!