Câu hỏi:

24/09/2022 4,910

Cho hàm số fx=4x+11ax2+2a+1x              khi   x03                                           khi  x=0. Biết a là giá trị để hàm số liên tục tại điểm x0=0. Tìm số nghiệm nguyên của bất phương trình x2x+36a<0. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Hàm số liên tục tại điểm x0=0 limx0fx=f0limx04x+11ax2+2a+1x=3. Ta biến đổi

limx04x+11ax2+2a+1x=limx04xax2+2a+1x4x+1+1=limx04ax+2a+14x+1+11

+) Nếu a=12 thì giới hạn (1) không tồn tại, hàm số không liên tục tại điểm 0 nên loại trường hợp này.

+) Nếu a12 giới hạn (1) bằng 22a+1 . Vậy để hàm số liên tục tại điểm 0 khi và chỉ khi 22a+1=3a=16. Như vậy ta cần tìm số nghiệm nguyên của bất phương trình x2x6<0. Giải ra ta được 2<x<3 . Vậy bất phương trình có 4 nghiệm nguyên là 1;0;1;2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều ABCD cạnh a. Tính tích vô hướng vectơ AB , AC theo . (ảnh 1)

Tứ diện ABCD là tứ diện đều cạnh a nên suy ra tam giác ABC đều cạnh a.

Do đó AB.AC=AB.AC.cosAB,AC=AB.AC.cosBAC^=a.a.cos60°=12a2.

Lời giải

Ta có : limx1ax2+bx5x1=limx1ax21+bx1+a+b5x1

=limx1ax+1+b+limx1a+b5x1

=2a+ b +limx1a+b5x1.

          Suy ra limx1ax2+bx5x1=20   2a+b=20a+b5=0a=15b=10 .

          Vậy P=152+(10)215(10)=320.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP