Câu hỏi:

26/09/2022 417

Tính giới hạn I=lim2n3n+11+3+5+...+2n1.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Ta có 1+3+5+...+2n1=n2, n*.

 I=lim2n3n+11+3+5+...+2n1=lim2n2+6n+1n2 =lim2+6n+1n2=2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp SABC có đáy là tam giác ABC vuông tại B và SA vuông góc với mặt phẳng ABC. Mệnh đề nào sai ?

Xem đáp án » 26/09/2022 27,593

Câu 2:

Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=a. SA vuông góc với mặt phẳng (ABC) và SA=a. Gọi α là góc giữa SB và (SAC). Tính α.

Xem đáp án » 26/09/2022 25,065

Câu 3:

Trong không gian cho điểm O và đường thẳng d. Qua điểm O có bao nhiêu mặt phẳng vuông góc với đường thẳng d?

Xem đáp án » 26/09/2022 24,295

Câu 4:

Cho hình chóp SABC SA=SB AC=CB. Khẳng định nào sau đây đúng?

Xem đáp án » 26/09/2022 18,957

Câu 5:

Cho hình lăng trụ ABCA'B'C'. Đặt AA'=a, AB=b, AC=c. Phân tích véc tơ BC' qua các véc tơ a,b,c 

Xem đáp án » 26/09/2022 12,792

Câu 6:

Cho hình tứ diện ABCD . Gọi M,N lần lượt là trung điểm của AB và CD , I là trung điểm của đoạn MN . Mệnh đề nào sau đây sai?

Xem đáp án » 26/09/2022 11,789

Câu 7:

Cho tam giác đều ABC có cạnh bằng 2a. Người ta dựng tam giác đều A1B1C1 có cạnh bằng đường cao của tam giác ABC; dựng tam giác đều A2B2C2 có cạnh bằng đường cao của tam giác A1B1C1 và cứ tiếp tục như vậy. Giả sử cách dựng trên có thể tiến ra vô hạn. Nếu tổng diện tích S của tất cả các tam giác đều ABC, A1B1C1, A2B2C2,… bằng 243 thì a bằng:

Xem đáp án » 26/09/2022 9,852
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua