Câu hỏi:

28/09/2022 411

c) Gọi O là giao điểm của PA và HK.

Chứng minh OA2+OP2+OH2+OK2=PA2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) ΔAOH ΔAOK AH=AK,OAH^=OAK^, AO là cạnh chung

ΔAOH=ΔAOK, suy ra AOH^=AOK^, mà hai góc này kề bù nên

AOH^=AOK^=90°PAHK tại O.

Áp dụng định lý Py-ta-go vào các tam giác vuông tại O là OAH, OAK, OPH, OPK ta có:

OA2+OH2=AH2;OA2+OK2=AK2

OP2+OH2=PH2;OP2+OK2=PK2

2OA2+OP2+OH2+OK2=2AH2+PH2 (vì AH=AK PH=PK)

OA2+OP2+OH2+OK2=AH2+PH2

Mà tam giác PAH vuông tại H  AH2+PH2=PA2(định lý Py-ta-go)

OA2+OP2+OH2+OK2=PA2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho tam giác ABC vuông cân đáy BC. Gọi M, N là trung điểm của AB, AC.  (ảnh 1)

Từ A kẻ AKMC tại K và AQHN tại Q.

Hai tam giác vuông MAK và NCH có

MA=NC=12AB,A1^=C1^ (cùng phụ với góc AMC)

ΔMAK=ΔNCHAK=HC   (1)

ΔBAK ΔACH có AK = CH, A1^=C1^, AB = CA

ΔBAK=ΔACHc.g.cBKA^=AHC^

ΔAQN ΔCHN có AN = NC,

ANQ^=CNH^ΔANQ=ΔCNHchgnAQ=CH (2)

Từ (1) và (2), suy ra: AK = AQ.

ΔAKH ΔAQH AKH^=AQH^=90°,AK=AQ,AH chung

ΔAKH=ΔAQHchcgvKHA^=QHA^HA là tia phân giác của góc KHQ

AHQ^=45°AHC^=135°BKA^=135°

Từ BKA^+BKH^+AKH^=360°BKH^=135°

Tam giác AKH có KHA^=45° nên nó vuông cân tại K suy ra KA = KH.

ΔBKA=ΔBKHc.g.cBA=BH hay ΔABH cân tại B.

Lời giải

 a)

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D sao cho BD=BA . Qua D vẽ đường thẳng vuông góc với BC cắt AC tại E. (ảnh 1)

ΔABE ΔDBE có:

A^=D^=90° (Vì AEAB,ADBC)

AB=AD (giả thiết), BE: cạnh chung

Vậy ΔABE=ΔDBE (ch-cgv)

AE=DE.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP