Thi Online Bài tập chuyên đề Toán 7 Dạng 7: Các trường hợp bằng nhau của tam giác vuông có đáp án
Bài tập chuyên đề Toán 7 Dạng 7: Các trường hợp bằng nhau của tam giác vuông có đáp án
-
238 lượt thi
-
19 câu hỏi
-
50 phút
Câu 1:
Cho tam giác cân tại A. Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC.

* Tìm cách giải. Để chứng minh AD là tia phân giác của góc BAC, chúng ta cần chứng minh . Do đó hiển nhiên cần chứng minh
* Trình bày lời giải.
Xét và có: ; AD là cạnh chung; (cân tại A).
Do đó (cạnh huyền - cạnh góc vuông)
(cặp góc tương ứng).
Vậy AD là tia phân giác góc BAC.
* Nhận xét. Chúng ta còn có DA là tia phân giác của góc BDC, tam giác DBC cân tại D.
AD vuông góc với BC.
Câu 2:
Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC. Trên cạnh BC lấy điểm E sao cho BA=BE. Kẻ . Chứng minh rằng

* Trình bày lời giải.
cân tại B nên (vì cùng vuông góc với AC)
(slt) .
Câu 3:
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC.
a) Chứng minh PB = PC và BH = CK.
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC.
a) Chứng minh PB = PC và BH = CK.

a) và có
, MP là cạnh chung
(hai cạnh tương ứng)
Câu 4:
b) Chứng minh ba điểm H, M, K thẳng hàng.
b) và có , AP là cạnh chung
(cạnh huyền - góc nhọn)
(hai cạnh tương ứng)
và có
(cạnh huyền - cạnh góc vuông)
(hai cạnh tương ứng)
Câu 5:
c) Gọi O là giao điểm của PA và HK.
Chứng minh
c) Gọi O là giao điểm của PA và HK.
Chứng minh
c) và có là cạnh chung
, suy ra , mà hai góc này kề bù nên
tại O.
Áp dụng định lý Py-ta-go vào các tam giác vuông tại O là OAH, OAK, OPH, OPK ta có:
(vì và )
Mà tam giác PAH vuông tại H (định lý Py-ta-go)
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%