10 câu Trắc nghiệm Toán 7 Bài 9: Tính chất ba đường cao của tam giác có đáp án (Vận dụng)

22 người thi tuần này 4.6 3.1 K lượt thi 10 câu hỏi 20 phút

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Đáp án A

Trên đoạn BF lấy điểm G sao cho BG = BC khi đó G nằm giữa D và F

Ta có: BG=BD+DGDF=DG+GF

Mà BG = DF (cùng bằng BC) nên BD = GF

ΔBCG cân tại B, DBE^=EBC^ nên BE là phân giác đồng thời là đường cao của ΔBCG

Gọi H là giao của BE và GC nên BHGC

ΔBHG vuông tại H nên

HGB^+GBH^=900CGB^=90013ABC^

ΔABD vuông tại A nên

ABD^+ADB^=900ADB^=90013ABC^

ADB^=CDG^ (hai góc đối đỉnh) nên CDG^=90013ABC^

Do đó: CGB^=CDG^=90013ABC^ nên ΔCDG cân tại C suy ra CD = CG (tính chất tam giác cân)

CDB^ là góc ngoài tại đỉnh D của ΔCDG nên

CDB^=DCG^+CGD^ (1)

CGF^ là góc ngoài tại đỉnh D của ΔCDG nên

CGF^=DCG^+CGD^ (2)

Từ (1)(2)(3) suy ra CDB^=CGF^

Xét ΔCDB và ΔCGF có:

CDB^=CGF^cmtCD=CG(cmt)BD=FG(cmt)ΔCDB=ΔCGF(c.g.c)

CB=CF (hai cạnh tương ứng)

CF=DF (cùng bằng BC)

Vậy ΔCDF cân tại F

Câu 2

Cho ΔABC có vuông tại  A, đường cao AH, phân giác AD. Gọi I, J lần lượt là giao điểm các phân giác của ΔABH,ΔACH, E là giao điểm của đường thẳng BI và AJ. Chọn câu đúng

Lời giải

Đáp án A

+) Ta có: HAC^+ACH^=900HBA^+ACH^=900gtHAC^=HBA^ (1)

Mặt khác, BI là tia phân giác của ABC^ và E thuộc BI suy ra

ABE^=ABC^2 (2) (tính chất tia phân giác)

+) AJ là tia phân giác của HAC^(gt)JAC^=HAC^2 (3) (tính chất tia phân giác)

Từ (1)(2)(3) ABE^=JAC^

Xét ΔABE có:

ABE^+BAE^=JAC^+BAE^=BAC^=900AEB^=900

ΔAEB vuông tại E

Lời giải

Đáp án C

ABE^ là góc ngoài tại đỉnh D của ΔABK nên:

ABE^=BAK^+AKB^=BAC^+900

FCA^ là góc ngoài tại đỉnh C của ΔACH nên

FCA^=CAH^+AHC^=BAC^+900ABE^=FCA^=ABC^+900

Xét ΔABE và ΔFCA có:

ABE^=FCA^(cmt)AB=FC(gt)EB=AC(gt)ΔABE=ΔFCA(cgc)

BAE^=CFA^ (hai cạnh tương ứng)

AE=FA (hai cạnh tương ứng)

ΔAHF vuông tại H nên HAF^+HFA^=90o hay HAF^+CFA^=90o

Mà BAE^=CFA^ (cmt) suy ra HAF^+BAE^=90o hay EAF^=90o

ΔAEF có: AE=FA(cmt);EAF^=90o(cmt) nên ΔAEF vuông cân tại A

Lời giải

Đáp án B

H là giao của hai đường cao BE;CF nên H là trực tâm của ΔABC

Gọi D là giao của AH và BC nên ADBC

Xét ΔAFH vuông tại F, đường trung tuyến FI nên FI=IA=12AH

(trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Do đó ΔFAI cân tại I suy ra IFA^=IAF^ (1)

Xét ΔBFC vuông tại F, đường trung tuyến FK nên FK=BK=12BC

(trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Do đó ΔFBK cân tại K suy ra KFB^=KBF^ (2)

Xét ΔABD vuông tại D nên DAB^+DBA^=900

Từ (1) (2) suy ra:

IFA^+KFB^=IAF^+KBF^=DAB^+DBA^=900

Ta có:

IFA^+IFK^+KFB^=1800IFK^=1800(IFA^+KFB^)=1800900=900

Lời giải

Đáp án C

Sử dụng kết quả câu trước ta có: IFK^=900 hay ΔIFK vuông tại F và FI=12AH;FK=12BC

Ta có: FI=12AH=12.6=3(cm);FK=12BC=12.8=4(cm)

Áp dụng định lí Pytago vào tam giác vuông IFK ta có:

IK2=FI2+FK2=32+42=25IK=25=5(cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Cho tam giác ABC nhọn có trực tâm H. Chọn câu đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

623 Đánh giá

50%

40%

0%

0%

0%