Quảng cáo
Trả lời:

Giải
Tìm cách giải. Để tìm x,y trong dãy tỉ số bằng nhau và biết thêm điều kiện rằng buộc. Ta có thể:
- Cách 1. Đặt hệ số tỉ lệ k làm ẩn phụ
- Cách 2. Sử dụng tính chất dãy tỉ số bằng nhau
- Cách 3. Biểu diễn x theo y từ tỉ lệ thức (hoặc y theo x)
ü Trình bày lời giải
+ Cách 1 : (Đặt ẩn phụ)
Đặt \[\frac{x}{3} = \frac{y}{4} = k\] suy ra : \[x = 3k,y = 4k\]
Theo giả thiết : \[2x + 3y = 36 \Rightarrow 6k + 12k = 36 \Rightarrow 18k = 36 \Rightarrow k = 2\]
Do đó : \[x = 3.2 = 6;y = 4.2 = 8\]
Kết luận \[x = 6,y = 8\]
+ Cách 2: (sử dụng tính chất của dãy tỉ số bằng nhau):
Áp dụng tính chất của dãy tỉ số bằng nhau ta có : \[\frac{x}{3} = \frac{y}{4} = \frac{{2x + 3y}}{{2.3 + 3.4}} = \frac{{36}}{{18}} = 2\]
Do đó : \[\frac{x}{3} = 2 \Rightarrow x = 6\]
\[\frac{y}{4} = 2 \Rightarrow y = 8\]
Kết luận : \[x = 6,y = 8\]
+ Cách 3: (phương pháp thế)
Từ giả thiết \[\frac{x}{3} = \frac{y}{4} \Rightarrow x = \frac{{3y}}{4}\]
Mà \[2x + 3y = 36 \Rightarrow \frac{{3y}}{2} + 3y = 36 \Rightarrow 9y = 72 \Rightarrow y = 8\]
Do đó : \[x = \frac{{3.8}}{4} = 6\]
Kết luận \[x = 6,y = 8\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn:
Ta có : \[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}} = \frac{{4 + 20y}}{{20x}} = \frac{{5 + 35y}}{{20x}} = \]
\[ = \frac{{1 + 3y + 4 + 20y - 5 - 35y}}{{12 + 20x - 20x}} = \frac{{ - 12y}}{{12}} = - y\]
\[ \Rightarrow 1 + 3y = - 12y \Rightarrow y = - \frac{1}{{15}}\]
Thay vào đề bài ,ta được : \[\frac{{1 + 5.\frac{{ - 1}}{{15}}}}{{5x}} = \frac{1}{{15}} \Rightarrow x = 2\]
Vậy \[x = 2\] và \[y = - \frac{1}{{15}}\]
Lời giải
Hướng dẫn:
Với \[a,b,c \ne 0\] ta có : \[\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\]
\[ \Rightarrow \frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}} \Rightarrow \frac{1}{b} + \frac{1}{a} = \frac{1}{c} + \frac{1}{b} = \frac{1}{a} + \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a} = \frac{1}{b} = \frac{1}{c} \Rightarrow a = b = c \Rightarrow P = 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.