Câu hỏi:
28/09/2022 1,344Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]
Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giải
Tìm cách giải. Quan sát phần kết luận ta cần biến đổi đưa về : \[ay = bx,bz = cy,az = cx\] hay cần chứng minh \[ay - bx = 0,bz - cy = 0,az - cx = 0\]. Vì vậy từ giả thiết ta cần chứng minh\[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c} = 0\]. Với suy nghĩ đó , chúng ta cần nhân mỗi tỉ số với một số thích hợp vào tử và mẫu số sao cho khi vận dụng tính chất dãy tỉ số bằng nhau thì được kết quả bằng 0. Quan sát tỉ số \[\frac{{bz - cy}}{a}\] và \[\frac{{cx - az}}{b}\] ta thấy bz và \[ - az\]; để triệt tiêu được, chúng ta cần nhân cả tử và mẫu của tỉ số thứ nhất với a; nhân cả tử và mẫu của tỉ số thứ hai với b. Tương tự như vậy với tỉ số thứ ba.
Trình bày lời giải
Từ đề bài ta có : \[\frac{{abz - acy}}{{{a^2}}} = \frac{{bcx - abz}}{{{b^2}}} = \frac{{acy - bcx}}{{{c^2}}}\]
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\[\frac{{abz - acy}}{{{a^2}}} = \frac{{bcx - abz}}{{{b^2}}} = \frac{{acy - bcx}}{{{c^2}}} = \frac{{abz - acy + bcx - abz + acy - bcx}}{{{a^2} + {b^2} + {c^2}}} = 0\]
Suy ra \[ay - bx = 0,bz - cy = 0,bz - cx = 0\]
\[ \Rightarrow ay = bx,bz = cy,bz = cx \Rightarrow \frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm x, y biết :
\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]
về câu hỏi!