Câu hỏi:
28/09/2022 3,459
Độ dài các cạnh của một tam giác tỉ lệ với nhau như thế nào, biết nếu cộng lần lượt từng độ dài hai đường cao của tam giác đó thì các tổng này tỉ lệ với 7; 6 ; 5.
Quảng cáo
Trả lời:
Giải
Đặt độ dài ba cạnh tam giác là a, b, c. Độ dài ba đường cao tương ứng là \[{h_a};{h_b};{h_c}\]. Theo đề bài ta có : \[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} = \frac{{{h_c} + {h_a}}}{5}\] và \[a{h_a} = b{h_b} = c{h_c}\left( 1 \right)\]
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} = \frac{{{h_c} + {h_a}}}{5} = \frac{{{h_a} + {h_b} - {h_b} - {h_c}}}{{7 - 6}} = {h_a} - {h_c}\]
\[ \Rightarrow {h_c} + {h_a} = 5{h_a} - 5{h_c} \Rightarrow 2{h_a} = 3{h_c} \Rightarrow \frac{{{h_a}}}{3} = \frac{{{h_c}}}{2}\left( 2 \right)\]
Mặt khác \[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} \Rightarrow \frac{{2{h_a} + 2{h_b}}}{{14}} = \frac{{{h_b} + {h_c}}}{6} \Rightarrow \frac{{3{h_c} + 2{h_b}}}{{14}} = \frac{{{h_b} + {h_c}}}{6}\]
\[ \Rightarrow 3\left( {3{h_c} + 2{h_b}} \right) = 7\left( {{h_b} + {h_c}} \right) \Rightarrow 9{h_c} + 6{h_b} = 7{h_b} + 7{h_c} \Rightarrow 2{h_c} = {h_b} \Rightarrow \frac{{{h_c}}}{2} = \frac{{{h_b}}}{4}\left( 3 \right)\]
Từ (2),(3) suy ra : \[\frac{{{h_a}}}{3} = \frac{{{h_b}}}{4} = \frac{{{h_c}}}{2}\]
Đặt \[\frac{{{h_a}}}{3} = \frac{{{h_b}}}{4} = \frac{{{h_c}}}{2} = k\left( {k > 0} \right) \Rightarrow {h_a} = 3k;{h_b} = 4k;{h_c} = 2k\]
Kết hợp với (1), ta có : \[3a = 4b = 2c \Rightarrow \frac{a}{4} = \frac{b}{3} = \frac{c}{6}\]
Vậy độ dài ba cạnh tỉ lệ với 4; 3; 6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn:
Ta có : \[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}} = \frac{{4 + 20y}}{{20x}} = \frac{{5 + 35y}}{{20x}} = \]
\[ = \frac{{1 + 3y + 4 + 20y - 5 - 35y}}{{12 + 20x - 20x}} = \frac{{ - 12y}}{{12}} = - y\]
\[ \Rightarrow 1 + 3y = - 12y \Rightarrow y = - \frac{1}{{15}}\]
Thay vào đề bài ,ta được : \[\frac{{1 + 5.\frac{{ - 1}}{{15}}}}{{5x}} = \frac{1}{{15}} \Rightarrow x = 2\]
Vậy \[x = 2\] và \[y = - \frac{1}{{15}}\]
Lời giải
Giải
Đặt \[\frac{x}{2} = \frac{y}{3} = k\] suy ra : \[x = 2k,y = 3k\]
Theo giả thiết : \[xy = 24 \Rightarrow 2k.3k = 24 \Rightarrow {k^2} = 4 \Rightarrow k = \pm 2\]
+ Với \[k = 2\]thì \[x = 4;y = 6\]
+ Với \[k = - 2\] thì \[x = - 4;y = - 6\]
Kết luận. Vậy \[\left( {x;y} \right)\] là \[\left( { - 4; - 6} \right),\left( {4;6} \right)\].
Nhận xét. Trong ví dụ này có thể chúng ta mắc sai lầm sau :
+ Thứ nhất trong lời giải trên thiếu trường hợp \[k = - 2\]
+ Thứ hai chúng ta vận dụng tính chất : \[\frac{x}{2} = \frac{y}{3} = \frac{{xy}}{{2.3}} = \frac{{24}}{6} = 4!\] Chúng ta lưu ý rằng tính chất dãy tỉ số bằng nhau không cho phép nhân (hoặc chia) tử thức với nhau. Do vậy gặp điều kiện về phép nhân hoặc lũy thừa giữa các biến, chúng ta nên đặt hệ số tỉ lệ k làm ẩn phụ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.