Câu hỏi:
28/09/2022 1,810Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giải
Đặt độ dài ba cạnh tam giác là a, b, c. Độ dài ba đường cao tương ứng là \[{h_a};{h_b};{h_c}\]. Theo đề bài ta có : \[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} = \frac{{{h_c} + {h_a}}}{5}\] và \[a{h_a} = b{h_b} = c{h_c}\left( 1 \right)\]
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} = \frac{{{h_c} + {h_a}}}{5} = \frac{{{h_a} + {h_b} - {h_b} - {h_c}}}{{7 - 6}} = {h_a} - {h_c}\]
\[ \Rightarrow {h_c} + {h_a} = 5{h_a} - 5{h_c} \Rightarrow 2{h_a} = 3{h_c} \Rightarrow \frac{{{h_a}}}{3} = \frac{{{h_c}}}{2}\left( 2 \right)\]
Mặt khác \[\frac{{{h_a} + {h_b}}}{7} = \frac{{{h_b} + {h_c}}}{6} \Rightarrow \frac{{2{h_a} + 2{h_b}}}{{14}} = \frac{{{h_b} + {h_c}}}{6} \Rightarrow \frac{{3{h_c} + 2{h_b}}}{{14}} = \frac{{{h_b} + {h_c}}}{6}\]
\[ \Rightarrow 3\left( {3{h_c} + 2{h_b}} \right) = 7\left( {{h_b} + {h_c}} \right) \Rightarrow 9{h_c} + 6{h_b} = 7{h_b} + 7{h_c} \Rightarrow 2{h_c} = {h_b} \Rightarrow \frac{{{h_c}}}{2} = \frac{{{h_b}}}{4}\left( 3 \right)\]
Từ (2),(3) suy ra : \[\frac{{{h_a}}}{3} = \frac{{{h_b}}}{4} = \frac{{{h_c}}}{2}\]
Đặt \[\frac{{{h_a}}}{3} = \frac{{{h_b}}}{4} = \frac{{{h_c}}}{2} = k\left( {k > 0} \right) \Rightarrow {h_a} = 3k;{h_b} = 4k;{h_c} = 2k\]
Kết hợp với (1), ta có : \[3a = 4b = 2c \Rightarrow \frac{a}{4} = \frac{b}{3} = \frac{c}{6}\]
Vậy độ dài ba cạnh tỉ lệ với 4; 3; 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm x, y biết :
\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]
về câu hỏi!