Câu hỏi:
28/09/2022 4,992Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn: Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\[\frac{{2x + 1}}{5} = \frac{{3y - 2}}{7} = \frac{{2x + 1 + 3y - 2}}{{5 + 7}} = \frac{{2x + 3y - 1}}{{12}}\]
Kết hợp với đề bài suy ra: \[\frac{{2x + 3y - 1}}{{12}} = \frac{{2x + 3y - 1}}{{6x}}\]
Trường hợp 1: Xét \[2x + 3y - 1 = 0\]
suy ra: \[\frac{{2x + 1}}{5} = \frac{{3y - 2}}{7} = 0 \Rightarrow 2x + 1 = 0;3y - 2 = 0 \Rightarrow x = \frac{{ - 1}}{2};y = \frac{2}{3}\]
Trường hợp 2: Xét \[2x + 3y - 1 \ne 0\] suy ra \[6x = 12 \Rightarrow x = 2\]
Thay vào đề bài ta có : \[\frac{{2.2 + 1}}{5} = \frac{{3y - 2}}{7} \Rightarrow \frac{{3y - 2}}{7} = 1 \Leftrightarrow 3y - 2 = 7 \Leftrightarrow y = 3\]
Vậy \[x = 2;y = 3\]
Nhận xét. bài này dễ bỏ sót trường hợp 1
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm x, y biết :
\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]
về câu hỏi!