Quảng cáo
Trả lời:

Hướng dẫn:
Đặt \[\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = k \Rightarrow x = 3k;y = 4k;z = 5k\]
Mà \[5{z^2} - 3{x^2} - 2{y^2} = 594 \Rightarrow 5.25{k^2} - 3.9{k^2} - 2.16{k^2} = 594\]
\[ \Leftrightarrow 66{k^2} = 594 \Leftrightarrow {k^2} = 9 \Leftrightarrow k = \pm 3\]
+ Với \[k = 3\] suy ra \[x = 9;y = 12;z = 15\]
+ Với \[k = - 3\] suy ra \[x = - 9;y = - 12;z = - 15\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn:
Ta có : \[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}} = \frac{{4 + 20y}}{{20x}} = \frac{{5 + 35y}}{{20x}} = \]
\[ = \frac{{1 + 3y + 4 + 20y - 5 - 35y}}{{12 + 20x - 20x}} = \frac{{ - 12y}}{{12}} = - y\]
\[ \Rightarrow 1 + 3y = - 12y \Rightarrow y = - \frac{1}{{15}}\]
Thay vào đề bài ,ta được : \[\frac{{1 + 5.\frac{{ - 1}}{{15}}}}{{5x}} = \frac{1}{{15}} \Rightarrow x = 2\]
Vậy \[x = 2\] và \[y = - \frac{1}{{15}}\]
Lời giải
Hướng dẫn:
Với \[a,b,c \ne 0\] ta có : \[\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\]
\[ \Rightarrow \frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}} \Rightarrow \frac{1}{b} + \frac{1}{a} = \frac{1}{c} + \frac{1}{b} = \frac{1}{a} + \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a} = \frac{1}{b} = \frac{1}{c} \Rightarrow a = b = c \Rightarrow P = 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.