Câu hỏi:
28/09/2022 195Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn:
Từ \[\frac{{x - y}}{{x + y}} = \frac{{z - x}}{{z + x}}\] suy ra \[\frac{{x - y}}{{z - x}} = \frac{{x + y}}{{z + x}}\]
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\[\frac{{x - y}}{{z - x}} = \frac{{x + y}}{{z + x}} = \frac{{x - y + x + y}}{{z - x + z + x}} = \frac{{2x}}{{2z}} = \frac{x}{z}\left( 1 \right)\]
\[\frac{{x - y}}{{z - x}} = \frac{{x + y}}{{z + x}} = \frac{{x - y - x - y}}{{z - x - z - x}} = \frac{{ - 2y}}{{ - 2x}} = \frac{y}{x}\left( 2 \right)\]
Từ (1) và (2) , suy ra : \[\frac{x}{z} = \frac{y}{x} \Rightarrow {x^2} = yz\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm x, y biết :
\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]
về câu hỏi!