Câu hỏi:

19/10/2022 11,539

Tổng bình phương các nghiệm của phương trình x22x+7=x24 bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có x22x+7=x24

x22x+7=x2x+2

x22x+7x2=0

x – 2 = 0 hoặc 2x+7x2=0

x = 2 hoặc 2x+7=x+2  (2)

Giải (2):

Bình phương hai vế của phương trình (2), ta được:

2x + 7 = (x + 2)2

2x + 7 = x2 + 4x + 4

x2 + 2x – 3 = 0

x = 1 hoặc x = –3.

Với x = 1, ta có 2.1+7=1+2 (đúng)

Với x = –3, ta có 2.3+7=3+2 (sai)

Vì vậy khi thay lần lượt các giá trị x = 1 và x = –3 vào phương trình (2), ta thấy chỉ có x = 1 thỏa mãn.

Do đó phương trình (2) có nghiệm là x = 1.

Vậy phương trình đã cho có nghiệm là x = 2 hoặc x = 1.

Khi đó tổng bình phương các nghiệm của phương trình đã cho là: 22 + 12 = 5.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Số giao điểm giữa đồ thị hàm số y=3x4 và đồ thị hàm số y = x – 3 là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Phương trình hoành độ giao điểm của hai đồ thị là: 3x4=x3.

Bình phương hai vế của phương trình trên, ta được 3x – 4 = (x – 3)2

3x – 4 = x2 – 6x + 9

x2 – 9x + 13 = 0

x=9+292 hoặc x=9292.

Với  x=9+292, ta có 3.9+2924=9+2923 (đúng)

Với x=9292, ta có 3.92924=92923 (sai)

Vì vậy khi thay lần lượt x=9+292 x=9292 vào phương trình 3x4=x3, ta thấy chỉ có x=9+292 thỏa mãn.

Vậy hai đồ thị cắt nhau tại một giao điểm.

Do đó ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có x23x4x+1=2.

x23x4=2x+1.

Bình phương hai vế của phương trình trên, ta được:

x2 – 3x – 4 = 4(x + 1)2

x2 – 3x – 4 = 4(x2 + 2x + 1)

3x2 + 11x + 8 = 0

x = –1 hoặc x=83.

Với x = –1, ta có 123.141+1=2 (vô lý)

Với x=83, ta có 8323.83483+1=2 (đúng)

Vì vậy khi thay lần lượt các giá trị x = –1 và x=83 vào phương trình đã cho, ta thấy chỉ có x=83 thỏa mãn.

Vậy phương trình đã cho có nghiệm là x=83.

Khi đó a = –8 và b = 3 (do b > 0).

Suy ra a2 – b2 = (–8)2 – 32 = 55.

Vậy ta chọn phương án A.

Câu 3

Giao điểm của hai đồ thị hàm số y=42x23x+1 y=9x2+54x+81 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho ∆MNP vuông tại M có MN dài hơn MP 10 cm. Biết chu vi của ∆MNP là 50 cm. Độ dài của cạnh NP bằng khoảng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay