7 câu Trắc nghiệm Toán 10 chân trời sáng tạo Phương trình quy về phương trình bậc hai (Vận dụng) có đáp án
26 người thi tuần này 4.6 1.5 K lượt thi 7 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có .
.
Bình phương hai vế của phương trình trên, ta được:
x2 – 3x – 4 = 4(x + 1)2
⇒ x2 – 3x – 4 = 4(x2 + 2x + 1)
⇒ 3x2 + 11x + 8 = 0
⇒ x = –1 hoặc .
Với x = –1, ta có (vô lý)
Với , ta có (đúng)
Vì vậy khi thay lần lượt các giá trị x = –1 và vào phương trình đã cho, ta thấy chỉ có thỏa mãn.
Vậy phương trình đã cho có nghiệm là .
Khi đó a = –8 và b = 3 (do b > 0).
Suy ra a2 – b2 = (–8)2 – 32 = 55.
Vậy ta chọn phương án A.
Câu 2
A. A(5; 24);
B. ;
C. Cả A, B đều đúng;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Phương trình hoành độ giao điểm của hai đồ thị là:
Bình phương hai vế của phương trình đã cho, ta được 16(2x2 – 3x + 1) = 9x2 + 54x + 81
⇒ 23x2 – 102x – 65 = 0
⇒ x = 5 hoặc .
Khi thay x = 5 và vào phương trình đã cho, ta thấy cả x = 5 và đều thỏa mãn.
Với x = 5, ta có .
Suy ra tọa độ giao điểm A(5; 24).
Với , ta có .
Suy ra tọa độ giao điểm .
Vậy hai đồ thị có hai giao điểm là A(5; 24) và .
Ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có
(1)
Đặt , t ≥ 0.
Phương trình (1) tương đương với:
Bình phương hai vế của phương trình trên, ta được:
t2 – 2t + 3 = t2 – 6t + 8
⇒ 4t = 5
⇒ (nhận)
Với , ta có (đúng)
Vì vậy khi thay vào phương trình , ta thấy thỏa mãn.
Với , ta có .
Bình phương hai vế phương trình trên, ta được .
⇒ (vô nghiệm)
Vậy phương trình đã cho vô nghiệm.
Khi đó tập nghiệm của phương trình ban đầu là: ∅.
Ta chọn phương án D.
Câu 4
A. 2 giao điểm;
B. 4 giao điểm;
C. 3 giao điểm;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình hoành độ giao điểm của hai đồ thị là: .
Bình phương hai vế của phương trình trên, ta được 3x – 4 = (x – 3)2
⇒ 3x – 4 = x2 – 6x + 9
⇒ x2 – 9x + 13 = 0
⇒ hoặc .
Với , ta có (đúng)
Với , ta có (sai)
Vì vậy khi thay lần lượt và vào phương trình , ta thấy chỉ có thỏa mãn.
Vậy hai đồ thị cắt nhau tại một giao điểm.
Do đó ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có
⇔ x – 2 = 0 hoặc
⇔ x = 2 hoặc (2)
Giải (2):
Bình phương hai vế của phương trình (2), ta được:
2x + 7 = (x + 2)2
⇒ 2x + 7 = x2 + 4x + 4
⇒ x2 + 2x – 3 = 0
⇒ x = 1 hoặc x = –3.
Với x = 1, ta có (đúng)
Với x = –3, ta có (sai)
Vì vậy khi thay lần lượt các giá trị x = 1 và x = –3 vào phương trình (2), ta thấy chỉ có x = 1 thỏa mãn.
Do đó phương trình (2) có nghiệm là x = 1.
Vậy phương trình đã cho có nghiệm là x = 2 hoặc x = 1.
Khi đó tổng bình phương các nghiệm của phương trình đã cho là: 22 + 12 = 5.
Vậy ta chọn phương án B.
Câu 6
A. 21,41 cm;
B. 11,5 cm;
C. 28,71 cm;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 50 m;
B. 75 m;
C. 100 m;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
