Câu hỏi:

26/10/2022 1,520

Cho hình vẽ, biết rằng BE, CF lần lượt là tia phân giác của \(\widehat {{\rm{ABC}}}\), \(\widehat {{\rm{ACB}}}\) và \(\widehat {{\rm{ABE}}} = 38^\circ ,{\rm{ }}\widehat {{\rm{BCF}}} = 25^\circ \).

Media VietJack

Số đo của \(\widehat {\rm{A}}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Theo bài ra ta có BE là tia phân giác của \(\widehat {{\rm{ABC}}}\)

Suy ra \(\widehat {{\rm{ABE}}} = \frac{1}{2}\widehat {{\rm{ABC}}}\) (tính chất tia phân giác của một góc)

Suy ra \(\widehat {{\rm{ABC}}} = 2\widehat {{\rm{ABE}}} = 2.38^\circ = 76^\circ \).

Ta lại có CF là tia phân giác của \(\widehat {{\rm{ACB}}}\)

Suy ra \(\widehat {{\rm{BCF}}} = \frac{1}{2}\widehat {{\rm{ACB}}}\) (tính chất tia phân giác của một góc)

Suy ra \(\widehat {{\rm{ACB}}} = 2\widehat {{\rm{BCF}}} = 2.25^\circ = 50^\circ \).

Xét ∆ABC có: \(\widehat {\rm{A}} + \widehat {{\rm{ABC}}} + \widehat {{\rm{ACB}}} = 180^\circ \) (tổng ba góc trong một tam giác).

Hay \(\widehat {\rm{A}} + 76^\circ + 50^\circ = 180^\circ \).

Suy ra \(\widehat {\rm{A}} = 180^\circ - 76^\circ - 50^\circ = 54^\circ \)

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Theo bất đẳng thức ta có:

BC – AB < AC < BC + AC

Hay 30 – 18 < AC < 30 + 18

Suy ra 12 < AC < 48

Nếu đặt ở khu vực A một thiết bị phát wifi đảm bảo cả hai khu vực B và C đều nhận được tín hiệu thì bán kính hoạt động cần lớn hơn khoảng cách AB và AC.

Do đó trong các bán kính hoạt động của thiết bị phát wifi được nêu ở các phương án thì bán kính hợp lí là 48 m.

Ta chọn phương án D.

Câu 2

∆ABC có \(\widehat {\rm{A}}:\widehat {\rm{B}}:\widehat {\rm{C}} = 2:3:5\). Chọn khẳng định đúng:

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Theo bài ra \(\widehat {\rm{A}}:\widehat {\rm{B}}:\widehat {\rm{C}} = 2:3:5\) hay \(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{5}\)

Áp dụng định tổng ba góc của một tam giác cho ∆ABC ta có:

\[\widehat A + \widehat B + \widehat C = 180^\circ \] (tổng ba góc của một tam giác).

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{5} = \frac{{\widehat A + \widehat B + \widehat C}}{{2 + 3 + 5}} = \frac{{180^\circ }}{{10}} = 18^\circ \).

Suy ra \[\widehat A = 18^\circ .2 = 36^\circ ,\widehat B = 18^\circ .3 = 54^\circ ,\widehat C = 18^\circ .5 = 90^\circ \].

Do \(\widehat C = 90^\circ \) nên tam giác ABC là tam giác vuông tại C.

Vậy ta chọn phương án B.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay