10 Bài tập Nhận biết và chứng minh một đường thẳng là đường trung trực của một đoạn thẳng (có lời giải)
31 người thi tuần này 4.6 177 lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Một đường thẳng là đường trung trực của một đoạn thẳng khi thỏa mãn cả hai yếu tố sau:
+ Đi qua trung điểm của đoạn thẳng.
+ Vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.
- Đường thẳng d ở đáp án A có đi qua trung điểm I của đoạn thẳng AB và vuông góc với đoạn thẳng MN tại trung điểm I.
Do đó đường thẳng d ở đáp án A là đường trung trực của đoạn thẳng MN.
- Đường thẳng d ở đáp án B, D có đi qua trung điểm I nhưng không vuông góc với đoạn thẳng MN tại trung điểm I.
Do đó đường thẳng d ở đáp án B, D không là đường trung trực của đoạn thẳng MN.
- Đường thẳng d ở đáp án C không đi qua trung điểm của đoạn thẳng MN.
Do đó đường thẳng d ở đáp án C không là đường trung trực của đoạn thẳng MN.
Vậy ta chọn đáp án A.
Lời giải
Đáp án đúng là: C

Xét ∆ABD và ∆AED, có:
AD là cạnh chung.
\[\widehat {BAD} = \widehat {EAD}\] (AD là phân giác của \[\widehat {BAC}\]).
AB = AE (giả thiết).
Do đó ∆ABD = ∆AED (cạnh – góc – cạnh).
Suy ra BD = ED.
Mà AB = AE (giả thiết).
Do đó AD là đường trung trực của đoạn thẳng BE.
Vì AD là đường trung trực của đoạn thẳng BE nên AD vừa vuông góc với BE, vừa đi qua trung điểm của đoạn thẳng BE.
Do đó đáp án C đúng nhất.
Với E ∈ AC, ta có AB = AE (giả thiết) và AB < AC (giả thiết).
Do đó AE < AC.
Suy ra ba điểm B, E, C không thẳng hàng.
Mà AD vuông góc với BE.
Nên AD không vuông góc với BC.
Do đó đáp án A sai.
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là: B

Xét ∆OAI và ∆OBI, có:
OI là cạnh chung.
OA = OB (giả thiết).
\[\widehat {AOI} = \widehat {BOI}\] (OI là phân giác của \[\widehat {AOB}\]).
Do đó ∆OAI = ∆OBI (cạnh – góc – cạnh).
Suy ra AI = BI và \[\widehat {OAI} = \widehat {OBI}\] (cặp cạnh và cặp góc tương ứng).
Vì \[\widehat {OAI} = \widehat {OBI}\] nên đáp án D sai.
Vì AI = BI (chứng minh trên) và OA = OB (giả thiết).
Nên OI là đường trung trực của đoạn thẳng AB.
Hay Ot là đường trung trực của đoạn thẳng AB.
Do đó đáp án B đúng nhất.
Vậy ta chọn đáp án B.
Lời giải
Đáp án đúng là: D

Gọi d là đường trung trực của đoạn thẳng BC.
Vì AB = AC (∆ABC cân tại A).
Nên A cách đều hai điểm B, C.
Do đó A thuộc đường trung trực của đoạn thẳng BC hay A ∈ d (1).
Vì MB = MC (giả thiết).
Nên M cách đều hai điểm B, C.
Do đó M thuộc đường trung trực của đoạn thẳng BC hay M ∈ d (2).
Vì N là trung điểm BC (giả thiết).
Nên N ∈ d (3).
Từ (1), (2), ta có thể nói AM là đường trung trực của đoạn thẳng BC.
Do đó đáp án A đúng.
Từ (1), (3), ta có thể nói AN là đường trung trực của đoạn thẳng BC.
Do đó đáp án B đúng.
Từ (2), (3), ta có thể nói MN là đường trung trực của đoạn thẳng BC.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Lời giải
Đáp án đúng là: D

Vì AB = AE (giả thiết).
Nên ∆ABE cân tại A.
Suy ra \[\widehat {ABE} = \widehat {AEB}\].
∆ABE có: \[\widehat {BAC} + \widehat {ABE} + \widehat {AEB} = 180^\circ \].
Suy ra \[2\widehat {ABE} = 180^\circ - \widehat {BAC}\] (1).
Vì ba điểm A, B, D thẳng hàng và B nằm giữa A, D nên AD = AB + BD.
Vì ba điểm A, E, C thẳng hàng và E nằm giữa A, C nên AC = AE + EC.
Mà AB = AE và BD = EC (giả thiết).
Do đó AD = AC.
Suy ra ∆ADC cân tại A.
Khi đó ta có \[\widehat {ADC} = \widehat {ACD}\].
Do đó đáp án A đúng.
∆ADC có: \[\widehat {BAC} + \widehat {ADC} + \widehat {ACD} = 180^\circ \].
Suy ra \[2\widehat {ADC} = 180^\circ - \widehat {BAC}\] (2).
Từ (1), (2), ta suy ra \[\widehat {ADC} = \widehat {ABE}\].
Mà hai góc này ở vị trí đồng vị.
Do đó BE // DC.
Lại có AH ⊥ BE (giả thiết).
Suy ra AH ⊥ DC hay AK ⊥ DC (*).
Do đó đáp án B đúng.
Xét ∆ADK và ∆ACK, có:
AK là cạnh chung.
AD = AC (chứng minh trên).
\[\widehat {AKD} = \widehat {AKC} = 90^\circ \] (chứng minh trên).
Do đó ∆ADK = ∆ACK (cạnh huyền – cạnh góc vuông).
Suy ra DK = CK (cặp cạnh tương ứng).
Do đó K là trung điểm DC (**).
Từ (*), (**), ta suy ra AK là đường trung trực của đoạn thẳng DC.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
35 Đánh giá
50%
40%
0%
0%
0%