Câu hỏi:

27/10/2022 386

Cho điểm A(x0; y0) và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ A đến đường thẳng ∆ được cho bởi công thức:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Khoảng cách từ điểm A đến  ∆ được tính bởi công thức: A; ∆) = ax0+by0+ca2+b2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đường thẳng d1u1(4;6) và A(−3; 2) d1

Đường thẳng d2 có u2(2;3)

Ta có: u1= −2.u2 nên u1u2 là hai vectơ cùng phương . Do đó d1 và d2 song song hoặc trùng nhau.

Mặt khác, thay điểm A(−3; 2) vào phương trình đường thẳng d2 ta có: 3=12t'2=4+3t' 3=12t'2=4+3t' t'=2t'=23 (không thoả mãn)

Do đó điểm A thuộc d1 nhưng không thuộc d2. Vậy d1 song song với d2

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Để hai đường thẳng d1 và d2 song song hoặc trùng nhau thì u1 cùng phương với u2 nghĩa là tồn tại k ℝ thỏa mãn u1=ku2.

Vậy ta chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP