Câu hỏi:

28/10/2022 6,154

Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : x=2+aty=12t. Tìm giá trị của tham số a để góc giữa hai đường thẳng d1 và d2 bằng 45°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Gọi α là góc giữa hai đường thẳng d1 và d2

Ta có: vectơ pháp tuyến của đường thẳng d1 là: n1(3; 4)

Đường thẳng d2 có vectơ chỉ phương là u2(a;2)  vectơ pháp tuyến là n2(2; a)

Theo giả thiết ta có:

cos α = 3.2+4a32+42.22+a2= cos 45° 12

6+4a5.4+a212

 2.6+4a=5.4+a2

8(3 + 2a)2 = 25.(a2 + 4)

8(9 + 12a + 4a2) = 25a2 + 100

32a2 + 96a + 72 = 25a2 + 100

7a2 + 96a – 28 = 0

a=27a=14

Vậy với a = 27 hoặc a = −14 thì góc giữa hai đường thẳng d1 và d2 bằng 45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: nBH(1;1)

Đường cao BH vuông góc với AC nên đường thẳng AC nhận nBH(1;1)làm vectơ chỉ phương hay nhận nAC(1;1)làm vectơ pháp tuyến.

Do đó phương đường thẳng AC đi qua điểm C(–1; 2) và có vectơ pháp tuyến nAC(1;1) là: 1(x + 1) + 1(y – 2) = 0 x + y – 1 = 0.

Điểm A là giao điểm của hai đường thẳng AC và AN nên toạ độ điểm A thoả mãn hệ phương trình sau: 

x+y 1 = 02xy+5 = 0x=43y=73A43;73

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

BC=(2;1) BC = (2)2+12=5

AB=(0;1) AB = 02+12=1;

AC=(2;0) AC = 22+02=2.

Đường thẳng BC nhận BC là một vectơ chỉ phương , do đó đường thẳng BC có vectơ pháp tuyến là n=(1;2) và đi qua điểm C(0; -1).

Khi đó phương trình đường thẳng BC là: x + 2(y + 1) = 0 hay x + 2y + 2 = 0

d(A; BC) = 2+2.(1)+212+2225

SABC = 12.d(A; BC) . BC = 12.25.5= 1 (đvdt)

Mặt khác, ta có: SABC = p.r

Do đó bán kính đường tròn nội tiếp tam giác ABC là:

r = SABCp= 11+2+52 23+5=352

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP