5 câu Trắc nghiệm Toán 10 Kết nối tri thức Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. (Vận dụng) có đáp án
29 người thi tuần này 4.6 2.6 K lượt thi 5 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
Đường cao BH vuông góc với AC nên đường thẳng AC nhận làm vectơ chỉ phương hay nhận làm vectơ pháp tuyến.
Do đó phương đường thẳng AC đi qua điểm C(–1; 2) và có vectơ pháp tuyến là: 1(x + 1) + 1(y – 2) = 0 ⇔ x + y – 1 = 0.
Điểm A là giao điểm của hai đường thẳng AC và AN nên toạ độ điểm A thoả mãn hệ phương trình sau:
Câu 2
A. m = 1;
B. m = 7;
C. m = 6;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi A là giao điểm của đường thẳng d1 và d2 nên toạ độ điểm A thoả mãn:
⇒ A(1; –1)
Ba đường thẳng đã cho đồng quy khi và chỉ khi d3 cũng đi qua điểm A hay A ∈ d3
⇒ m.1 – (–1) – 7 = 0
⇔ m = 6.
Vậy với m = 6 thì ba đường thẳng đã cho đồng quy.
Câu 3
A. a = hoặc a = −14;
B. a = hoặc a = −14;
C. a = 5 hoặc a = −14;
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi α là góc giữa hai đường thẳng d1 và d2
Ta có: vectơ pháp tuyến của đường thẳng d1 là: (3; 4)
Đường thẳng d2 có vectơ chỉ phương là ⇒ vectơ pháp tuyến là (2; a)
Theo giả thiết ta có:
cos α = = cos 45° =
⇔ =
⇔
⇒ 8(3 + 2a)2 = 25.(a2 + 4)
⇔ 8(9 + 12a + 4a2) = 25a2 + 100
⇔ 32a2 + 96a + 72 = 25a2 + 100
⇔ 7a2 + 96a – 28 = 0
⇒
Vậy với a = hoặc a = −14 thì góc giữa hai đường thẳng d1 và d2 bằng 45°.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì AC ∩ AB = A nên toạ độ điểm A thoả mãn hệ phương trình sau:
Tương tự ta có: B và C (−8; 6)
Ta có: SABC = .d(A; BC).BC
=
=
= = .
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
⇒ BC =
⇒ AB = ;
⇒ AC = .
Đường thẳng BC nhận là một vectơ chỉ phương , do đó đường thẳng BC có vectơ pháp tuyến là và đi qua điểm C(0; -1).
Khi đó phương trình đường thẳng BC là: x + 2(y + 1) = 0 hay x + 2y + 2 = 0
⇒ d(A; BC) = =
⇒ SABC = .d(A; BC) . BC = = 1 (đvdt)
Mặt khác, ta có: SABC = p.r
Do đó bán kính đường tròn nội tiếp tam giác ABC là:
r = = =