Câu hỏi:
29/10/2022 376Cho tam giác MNP có ba đường phân giác MA, NB, PC cắt nhau tại I. Vẽ IH vuông góc NP tại H. Khẳng định nào dưới đây là đúng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Xét DMNP có ba đường phân giác MA, NB, PC cắt nhau tại I nên I cách đều ba cạnh của tam giác.
Điểm I không phải là giao điểm ba đường trung trực của tam giác nên không cách đều ba đỉnh. Do đó phương án B, D là sai.
Vì MI là tia phân giác của góc NMP nên \(\widehat {NMI} = \widehat {PMI} = \frac{1}{2}\widehat {PMN}\).
Vì NI là tia phân giác của góc MNP nên \(\widehat {MNI} = \widehat {PNI} = \frac{1}{2}\widehat {MNP}\).
Vì PI là đường phân giác của góc MPN nên \(\widehat {NPI} = \widehat {MPI} = \frac{1}{2}\widehat {MPN}\).
Xét DMIP có \(\widehat {MIP} + \widehat {MPI} + \widehat {PMI} = 180^\circ \) (tổng ba góc trong một tam giác)
Nên \(\widehat {MIP} = 180^\circ - \left( {\widehat {MPI} + \widehat {PMI}} \right)\)
Suy ra \(\widehat {MIP} = 180^\circ - \frac{1}{2}\left( {\widehat {MPN} + \widehat {PMN}} \right)\).
Xét DMNP có \(\widehat {MNP} + \widehat {MPN} + \widehat {PMN} = 180^\circ \)(tổng ba góc trong một tam giác)
Nên \(\widehat {MPN} + \widehat {PMN} = 180^\circ - \widehat {MNP}\).
Do đó \(\widehat {MIP} = 180^\circ - \frac{1}{2}\left( {180^\circ - \widehat {MNP}} \right)\)
Hay \(\widehat {MIP} = 180^\circ - 90^\circ + \frac{1}{2}\widehat {MNP} = 90^\circ + \frac{1}{2}\widehat {MNP}\).
Ta có \(\widehat {MIP} + \widehat {PIA} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {PIA} = 180^\circ - \widehat {MIP} = 180^\circ - \left( {90^\circ + \frac{1}{2}\widehat {MNP}} \right) = 90^\circ - \frac{1}{2}\widehat {MNP}\) (1)
Vì DINH vuông tại H nên \(\widehat {HIN} + \widehat {HNI} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {HIN} = 90^\circ - \widehat {HNI} = 90^\circ - \frac{1}{2}\widehat {MNP}\) (2)
Từ (1) và (2) suy ra \(\widehat {NIH} = \widehat {PIA}\).
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là:
Xét DBHI và DBKI có:
\(\widehat {BHI} = \widehat {BKI} = 90^\circ \),
BI là cạnh chung;
\(\widehat {HBI} = \widehat {KBI}\) (do BI là tia phân giác của góc ABC),
Do đó DBHI = DBKI (cạnh huyền – góc nhọn).
Suy ra BH = BK = 10 cm (hai cạnh tương ứng).
Chứng minh tương tự có DIJC = DIKC (cạnh huyền – góc nhọn).
Suy ra JC = KC = 15 cm.
Vì các tia phân giác của các góc B và C cắt nhau tại I nên I là giao điểm của ba đường phân giác của tam giác ABC.
Do đó AI là tia phân giác của góc A nên \(\widehat {HAI} = \widehat {JAI} = \frac{1}{2}.90^\circ = 45^\circ .\)
Tam giác AHI vuông tại H có \(\widehat {HAI} = 45^\circ \) nên là tam giác vuông cân tại H.
Do đó IH = AH.
Chứng minh tương tự ta cũng có tam giác AJI vuông cân tại J nên AJ = IJ.
Mà I là giao điểm của ba đường phân giác của tam giác ABC nên I cách đều ba cạnh của tam giác, hay IH = IK = IJ = 5 cm.
Suy ra AH = AJ = IH = IK = IJ = 5 cm.
Ta có AB = AH + BH = 5 + 10 = 15 (cm);
AC = AJ + JC = 5 + 15 = 20 (cm).
Diện tích tam giác ABC là:
\(\frac{1}{2}\).15.20 = 150 (cm2).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì DIHK có hai tia phân giác của góc H và góc K cắt nhau tại O nên IO là tia phân giác của góc HIK.
Do đó \(\widehat {HIO} = \widehat {KIO} = \frac{1}{2}\widehat {HIK}\).
Vì KO là tia phân giác của góc HKI nên \(\widehat {HKO} = \widehat {IKO} = \frac{1}{2}\widehat {HKI}\).
Xét DOIK có \(\widehat {IKO} + \widehat {KIO} + \widehat {KOI} = 180^\circ \) (tổng ba góc trong một tam giác)
Nên \(\widehat {KOI} = 180^\circ - \left( {\widehat {IKO} + \widehat {KIO}} \right)\)
Suy ra \(\widehat {KOI} = 180^\circ - \frac{1}{2}\left( {\widehat {HKI} + \widehat {KIH}} \right)\)
Lại có \(\widehat {HKI} + \widehat {KIH} = 180^\circ - \widehat {IHK}\) (tổng ba góc trong tam giác HIK)
Nên \(\widehat {KOI} = 180^\circ - \frac{1}{2}\left( {180^\circ - \widehat {IHK}} \right) = 180^\circ - 90^\circ + \frac{1}{2}\widehat {IHK} = 90^\circ + \frac{1}{2}\widehat {IHK}\)
Vậy ta chọn phương án B.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2