Câu hỏi:

29/10/2022 274

Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi H, J, K lần lượt là chân đường vuông góc kẻ từ I đến AB, AC, BC. Biết KI = 5 cm, BK = 10 cm, KC = 15 cm. Diện tích tam giác ABC bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là:

Media VietJack

Xét DBHI và DBKI có:

\(\widehat {BHI} = \widehat {BKI} = 90^\circ \),

BI là cạnh chung;

\(\widehat {HBI} = \widehat {KBI}\) (do BI là tia phân giác của góc ABC),

Do đó DBHI = DBKI (cạnh huyền – góc nhọn).

Suy ra BH = BK = 10 cm (hai cạnh tương ứng).

Chứng minh tương tự có DIJC = DIKC (cạnh huyền – góc nhọn).

Suy ra JC = KC = 15 cm.

Vì các tia phân giác của các góc B và C cắt nhau tại I nên I là giao điểm của ba đường phân giác của tam giác ABC.

Do đó AI là tia phân giác của góc A nên \(\widehat {HAI} = \widehat {JAI} = \frac{1}{2}.90^\circ = 45^\circ .\)

Tam giác AHI vuông tại H có \(\widehat {HAI} = 45^\circ \) nên là tam giác vuông cân tại H.

Do đó IH = AH.

Chứng minh tương tự ta cũng có tam giác AJI vuông cân tại J nên AJ = IJ.

Mà I là giao điểm của ba đường phân giác của tam giác ABC nên I cách đều ba cạnh của tam giác, hay IH = IK = IJ = 5 cm.

Suy ra AH = AJ = IH = IK = IJ = 5 cm.

Ta có AB = AH + BH = 5 + 10 = 15 (cm);

          AC = AJ + JC = 5 + 15 = 20 (cm).

Diện tích tam giác ABC là:

\(\frac{1}{2}\).15.20 = 150 (cm2).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác MNP có ba đường phân giác MA, NB, PC cắt nhau tại I. Vẽ IH vuông góc NP tại H. Khẳng định nào dưới đây là đúng:

Xem đáp án » 29/10/2022 225

Câu 2:

Cho tam giác IHK có hai tia phân giác của góc H và góc K cắt nhau tại O. Khẳng định nào sau đây là đúng?

Xem đáp án » 29/10/2022 193

Bình luận


Bình luận