Câu hỏi:

30/10/2022 814 Lưu

Cho ∆ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông góc với BC tại N. Từ C kẻ đường thẳng vuông góc với BM tại P. Gọi D là giao điểm của AB và CP. Khẳng định nào sau đây sai?

A. M là trực tâm của ∆DBC;
B. DM BC;
C. M, N, D thẳng hàng;
D. AB, MN, CP không đồng quy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.

Do đó phương án A đúng.

• Vì M là trực tâm của ∆DBC nên DM BC.

Do đó phương án B đúng.

• Ta có DM BC (chứng minh trên).

Mà MN BC (giả thiết).

Suy ra D, M, N thẳng hàng.

Do đó phương án C đúng.

Ta có:

+) D MN (do D, M, N thẳng hàng);

+) D AB (giả thiết);

+) D CP (giả thiết).

Suy ra AB, MN, CP cùng đồng quy tại điểm D.

Do đó phương án D sai.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 6 cm, 2 cm, 3 cm;

B. 8 cm, 4 cm, 4 cm;

C. 7 cm, 9 cm, 5 cm;
D. 8 cm, 5 cm, 3 cm.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có “Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng độ dài của hai cạnh còn lại”

Vì 6 cm < 2 cm + 3 cm = 5 cm, nên A sai;

     8 cm = 4 cm + 4 cm, nên B sai;

     8 cm = 5 cm + 3 cm, nên D sai;

    7 cm – 5 cm < 9 cm < 7 cm + 5 cm, nên C đúng.

Vậy ta chọn phương án C.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

Xét DDHE có AB, AC là hai đường trung trực của tam giác cắt nhau tại A nên A cách đều ba đỉnh của tam giác

Do đó AD = AH = AE.

Tam giác ADE có AD = AE nên là tam giác cân tại A.

Suy ra \(\widehat {ADE} = \widehat {AED}\) (tính chất tam giác cân)         (1)

Xét DADM và DAHM có

AM là cạnh chung,

DM = HM (do M thuộc trung trực của DH),

AD = AH (chứng minh trên).

Do đó DADM = DAHM (c.c.c).

Suy ra \(\widehat {ADM} = \widehat {AHM}\)(hai góc tương ứng)   (2)

Xét DANH và DANE có

AN là cạnh chung,

NH = NE (do N thuộc trung trực của EH),

AH = AE (chứng minh trên)

Do đó DANH = DANE (c.c.c)

Suy ra \(\widehat {AHN} = \widehat {AEN}\)(hai góc tương ứng)   (3)

Từ (1), (2) và (3) suy ra \(\widehat {AHN} = \widehat {AHM}\)

Do đó HA là tia phân giác của góc MHN.

Vậy ta chọn phương án C.

Câu 3

A. AH + BK + CL > AB + BC + CA;
B. AH + BK + CL < AB + BC + CA;
C. AH + BC + CL ≤ AB + BC + CA;
D. AH + BC + CL ≥ AB + BC + CA.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 3 cm;
B. 5 cm;
C. 6 cm;
D. 8 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {\rm{A}} > \widehat {\rm{B}}\);
B. \[\widehat B = \widehat C > \widehat A\];
C. \(\widehat {\rm{B}} = \widehat {\rm{C}}\);
D. \(\widehat {\rm{A}} > \widehat {\rm{C}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP