Câu hỏi:
30/10/2022 213Cho hàm số và hàm số , với m là tham số . Gọi m là giá trị sao cho đồ thị hai hàm số đã cho cắt nhau tại hai điểm phân biệt mà khoảng cách từ trung điểm K của đoạn thẳng EF đến trục hoành gấp đôi khoảng cách từ K đến trục tung. Khẳng định nào sau đây đúng?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
+ Phương trình hoành độ giao điểm của hai đồ thị hàm số là
(1)
+ Hai đồ thị hàm số đã cho có hai điểm chung khi và chỉ khi có hai nghiệm phân biệt .
+ Theo định lí Viet ta có .
Tọa độ các điểm và . Tọa độ trung điểm đoạn EFlà .
+ Khoảng cách từ đến trục hoành gấp đôi khoảng cách từ K đến trục tung khi và chỉ khi .
+ Kết hợp với ta có .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc cổng như hình vẽ, trong đó CD=6m , AD=4m , phía trên cổng có dạng hình parabol
Người ta cần thiết kế cổng sao cho những chiến xe container chở hàng với bề ngang thùng xe là 4m, chiều cao là 5,2mcó thể đi qua được (chiều cao được tính từ mặt đường đến nóc thùng xe và thùng xe có dạng hình hộp chữ nhật). Hỏi đỉnh I của parabol (theo mép dưới của cổng) cách mặt đất tối thiểu là bao nhiêu ?
Câu 2:
Tìm các giá trị của tham số m để cho giá trị nhỏ nhất của hàm số Trên đoạn bằng 1.
Câu 3:
Cho hàm số:
Với giá trị nào của m thì giá trị lớn nhất của hàm số (C) đạt giá trị nhỏ nhất.
Câu 4:
Câu 5:
Cho Parabol và đường thẳng ( m là tham số). Có bao nhiêu giá trị nguyên dương của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm sao cho biểu thức đạt giá trị nhỏ nhất.
Câu 6:
Cho hàm số . Có bao nhiêu giá trị của tham số m để hàm số xác định trên đoạn .
Câu 7:
Cho hàm số
Có bao nhiêu giá trị của a sao cho giá trị nhỏ nhất củatrên đoạn là bằng 5?
về câu hỏi!