Câu hỏi:

05/11/2022 381 Lưu

Để xác định hoành độ của điểm K tùy ý trong mặt phẳng tọa độ Oxy, ta thực hiện như sau:

A. Kẻ một đường thẳng đi qua điểm K và vuông góc với trục Oy, đường thẳng này cắt trục Oy tại điểm K’’ ứng với số k2. Khi đó k2 là hoành độ của điểm K;
B. Kẻ một đường thẳng bất kì đi qua điểm K, đường thẳng này cắt trục Ox tại điểm K’ ứng với số k1. Khi đó k1 là hoành độ của điểm K;
C. Kẻ một đường thẳng đi qua điểm K và vuông góc với trục Ox, đường thẳng này cắt trục Ox tại điểm K’ ứng với số k1. Khi đó k1 là hoành độ của điểm K;
D. Vì K là điểm tùy ý nên ta có thể chọn hoành độ của điểm K tùy ý.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Để xác định tọa độ của điểm K tùy ý trong mặt phẳng tọa độ Oxy, ta thực hiện như sau:

Từ K kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm K’ ứng với số k1. Số k1 là hoành độ của điểm K;

Từ K kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K’’ ứng với số k2. Số k2 là tung độ của điểm K.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\vec i = \left( {0;1} \right),\,\,\vec j = \left( {1;0} \right)\);
B. \(\vec i = \left( {1;0} \right),\,\,\vec j = \left( {0;1} \right)\);
C. \(\vec j = \left( {1;0} \right),\,\,\vec i = \left( {0;1} \right)\);
D. \(\vec j = \left( {0;1} \right),\,\,\vec i = \left( {1;0} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

\(\vec i\) có điểm gốc là O và có tọa độ (1; 0) được gọi là vectơ đơn vị trên trục Ox;

\(\vec j\) có điểm gốc là O và có tọa độ (0; 1) được gọi là vectơ đơn vị trên trục Oy.

Do đó ta chọn phương án B.

Câu 2

A. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\);
B. \(\vec u = - \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\);
C. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_2}\\{u_2} = {v_1}\end{array} \right.\);
D. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - {v_1}\\{u_2} = - {v_2}\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {{u_1};{u_2}} \right)\) và \(\vec v = \left( {{v_1};{v_2}} \right)\). Ta có:

\(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\)

Do đó ta chọn phương án A.

Câu 3

A. \(\overrightarrow {MN} = \left( {{x_N} + {x_M};{y_N} + {y_M}} \right)\);
B. \(\overrightarrow {MN} = \left( {{x_M} - {x_N};{y_N} - {y_M}} \right)\);
C. \(\overrightarrow {MN} = \left( {{x_M} - {x_N};{y_M} - {y_N}} \right)\);
D. \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\vec u = 2\vec i - 7\vec j\);
B. \(\vec u = 7\vec i + 2\vec j\);
C. \(\vec u = 2\vec i + 7\vec j\);
D. \(\vec u = - 2\vec i - 7\vec j\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP