Câu hỏi:
06/11/2022 13,690Cho đường tròn (C): x2 + y2 – 4x – 6y + 5 = 0. Đường thẳng d đi qua điểm A(3; 2) và cắt (C) theo một dây cung ngắn nhất có phương trình là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Đường tròn (C) có tâm I(2; 3), bán kính \(R = 2\sqrt 2 \).
Gọi M, N là giao điểm của đường thẳng d và đường tròn (C).
Kẻ IH ⊥ d. Suy ra H là trung điểm MN. Khi đó \(HN = \frac{1}{2}MN\).
∆IHN vuông tại H: IN2 = IH2 + HN2 (Định lí Pytago)
\( \Leftrightarrow {R^2} = I{H^2} + {\left( {\frac{{MN}}{2}} \right)^2}\)
\( \Leftrightarrow {\left( {\frac{{MN}}{2}} \right)^2} = {R^2} - I{H^2}\)
Dây cung MN ngắn nhất khi và chỉ khi IH lớn nhất. Tức là IA ≡ IH hay A ≡ H.
Khi đó IA ⊥ d.
Suy ra d nhận \(\overrightarrow {IA} = \left( {1; - 1} \right)\) làm vectơ pháp tuyến.
Đường thẳng d đi qua A(3; 2) và có vectơ pháp tuyến \(\overrightarrow {IA} = \left( {1; - 1} \right)\).
Suy ra phương trình d: 1(x – 3) – 1(y – 2) = 0
⇔ x – y – 1 = 0.
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 100
Đã bán 121
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với giá trị nào của m thì đường thẳng ∆: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 – 9 = 0?
Câu 2:
Câu 3:
Đường tròn (C) đi qua hai điểm A(1; 3), B(3; 1) và có tâm nằm trên đường thẳng d: 2x – y + 7 = 0 có phương trình là:
Câu 4:
Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận