5 câu Trắc nghiệm Toán 10 Cánh diều Phương trình đường tròn (Phần 2) có đáp án (Vận dụng)
28 người thi tuần này 5.0 1.5 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Đường tròn (C) có tâm O(0; 0), bán kính R = 3.
Vì ∆ tiếp xúc với (C) nên ta có d(O, ∆) = R.
\( \Leftrightarrow \frac{{\left| {4.0 + 3.0 + m} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 3\)
⇔ |m| = 15
⇔ m = 15 hoặc m = –15.
Vậy m = 15 hoặc m = –15 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Đường tròn (C) có tâm I(2; 3), bán kính \(R = 2\sqrt 2 \).
Gọi M, N là giao điểm của đường thẳng d và đường tròn (C).
Kẻ IH ⊥ d. Suy ra H là trung điểm MN. Khi đó \(HN = \frac{1}{2}MN\).
∆IHN vuông tại H: IN2 = IH2 + HN2 (Định lí Pytago)
\( \Leftrightarrow {R^2} = I{H^2} + {\left( {\frac{{MN}}{2}} \right)^2}\)
\( \Leftrightarrow {\left( {\frac{{MN}}{2}} \right)^2} = {R^2} - I{H^2}\)
Dây cung MN ngắn nhất khi và chỉ khi IH lớn nhất. Tức là IA ≡ IH hay A ≡ H.
Khi đó IA ⊥ d.
Suy ra d nhận \(\overrightarrow {IA} = \left( {1; - 1} \right)\) làm vectơ pháp tuyến.
Đường thẳng d đi qua A(3; 2) và có vectơ pháp tuyến \(\overrightarrow {IA} = \left( {1; - 1} \right)\).
Suy ra phương trình d: 1(x – 3) – 1(y – 2) = 0
⇔ x – y – 1 = 0.
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Đường tròn (C) có tâm I(–1; 3), bán kính \(R = \sqrt {{{\left( { - 1} \right)}^2} + {3^2} - 5} = \sqrt 5 \).
Gọi ∆ là tiếp tuyến cần tìm.
Đường thẳng d có vectơ pháp tuyến \({\vec n_d} = \left( {1;2} \right)\).
Vì ∆ // d nên ∆ nhận \({\vec n_d} = \left( {1;2} \right)\) làm vectơ pháp tuyến.
Suy ra phương trình ∆ có dạng: x + 2y + c = 0.
Vì d là tiếp tuyến của (C) nên d(I, ∆) = R.
\( \Leftrightarrow \frac{{\left| { - 1 + 2.3 + c} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \sqrt 5 \)
⇔ |c + 5| = 5
⇔ c + 5 = 5 hoặc c + 5 = –5
⇔ c = 0 hoặc c = –10.
Vậy có 2 phương trình tiếp tuyến d thỏa mãn yêu cầu bài toán có phương trình là: x + 2y = 0 hoặc x + 2y – 10 = 0.
Do đó ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi I(a; b) là tâm của đường tròn (C).
Ta có IA2 = IB2 = R2.
\( \Leftrightarrow {\left( {1 - a} \right)^2} + {\left( {3 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\)
⇔ 4a = 4b
⇔ a = b.
Khi đó tọa độ I(a; a).
Vì I(a; a) ∈ d nên 2a – a + 7 = 0
⇔ a = –7.
Suy ra I(–7; –7).
Ta có \(R = IA = \sqrt {{{\left( {1 + 7} \right)}^2} + {{\left( {3 + 7} \right)}^2}} = 2\sqrt {41} \).
Vậy phương trình đường tròn (C): (x + 7)2 + (y + 7)2 = 164.
Do đó ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình (Cm) có dạng: x2 + y2 – 2ax – 2y + c = 0, với \(\left\{ \begin{array}{l} - 2a = m + 2\\ - 2b = - \left( {m + 4} \right)\\c = m + 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{{m + 2}}{2}\\b = \frac{{m + 4}}{2}\\c = m + 1\end{array} \right.\)
Để (Cm) là phương trình đường tròn thì a2 + b2 – c > 0.
\( \Leftrightarrow {\left( { - \frac{{m + 2}}{2}} \right)^2} + {\left( {\frac{{m + 4}}{2}} \right)^2} - m - 1 > 0\)
⇔ m2 + 4m + 4 + m2 + 8m + 16 – 4m – 4 > 0
⇔ 2m2 + 8m + 16 > 0, ∀m ∈ ℝ.
Khi đó (Cm) luôn là đường tròn, với mọi giá trị của m.
Đường tròn (Cm) có tâm I có tọa độ là \(\left\{ \begin{array}{l}x = - \frac{{m + 2}}{2}\\y = \frac{{m + 4}}{2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2x = - m - 2\,\,\,\,\left( 1 \right)\\2y = m + 4\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Lấy (1) + (2) vế theo vế, ta được 2x + 2y = –m – 2 + m + 4
⇔ 2x + 2y – 2 = 0
⇔ x + y – 1 = 0.
Vậy khi m thay đổi, tâm của đường tròn (Cm) luôn nằm trên đường thẳng có phương trình x + y – 1 = 0.
Do đó ta chọn phương án B.