Câu hỏi:
06/11/2022 4,268Đường tròn (C) đi qua hai điểm A(1; 3), B(3; 1) và có tâm nằm trên đường thẳng d: 2x – y + 7 = 0 có phương trình là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi I(a; b) là tâm của đường tròn (C).
Ta có IA2 = IB2 = R2.
\( \Leftrightarrow {\left( {1 - a} \right)^2} + {\left( {3 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\)
⇔ 4a = 4b
⇔ a = b.
Khi đó tọa độ I(a; a).
Vì I(a; a) ∈ d nên 2a – a + 7 = 0
⇔ a = –7.
Suy ra I(–7; –7).
Ta có \(R = IA = \sqrt {{{\left( {1 + 7} \right)}^2} + {{\left( {3 + 7} \right)}^2}} = 2\sqrt {41} \).
Vậy phương trình đường tròn (C): (x + 7)2 + (y + 7)2 = 164.
Do đó ta chọn phương án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Đường tròn (C) có tâm I(2; 3), bán kính \(R = 2\sqrt 2 \).
Gọi M, N là giao điểm của đường thẳng d và đường tròn (C).
Kẻ IH ⊥ d. Suy ra H là trung điểm MN. Khi đó \(HN = \frac{1}{2}MN\).
∆IHN vuông tại H: IN2 = IH2 + HN2 (Định lí Pytago)
\( \Leftrightarrow {R^2} = I{H^2} + {\left( {\frac{{MN}}{2}} \right)^2}\)
\( \Leftrightarrow {\left( {\frac{{MN}}{2}} \right)^2} = {R^2} - I{H^2}\)
Dây cung MN ngắn nhất khi và chỉ khi IH lớn nhất. Tức là IA ≡ IH hay A ≡ H.
Khi đó IA ⊥ d.
Suy ra d nhận \(\overrightarrow {IA} = \left( {1; - 1} \right)\) làm vectơ pháp tuyến.
Đường thẳng d đi qua A(3; 2) và có vectơ pháp tuyến \(\overrightarrow {IA} = \left( {1; - 1} \right)\).
Suy ra phương trình d: 1(x – 3) – 1(y – 2) = 0
⇔ x – y – 1 = 0.
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Đường tròn (C) có tâm O(0; 0), bán kính R = 3.
Vì ∆ tiếp xúc với (C) nên ta có d(O, ∆) = R.
\( \Leftrightarrow \frac{{\left| {4.0 + 3.0 + m} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 3\)
⇔ |m| = 15
⇔ m = 15 hoặc m = –15.
Vậy m = 15 hoặc m = –15 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.