CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì cổng có hình dạng parabol nên có phương trình y = ax2 + bx + c (a ≠ 0) (1)

Đặt hệ trục tọa độ như hình vẽ:

 
Media VietJack

 Ta có: A(– 81; 0) và B(81; 0) và M(– 71; 43)

Thay lần lượt tọa độ các điểm vào (1) ta được:

0 = a.(– 81)2 + b(– 81) + c 6 561a – 81b + c = 0 (2)

0 = a.812 + b.81 + c 6 561a + 81b + c = 0 (3)

43 = a.(– 71)2 + b(– 71) + c 5 041 a – 71b + c = 43 (4)

Lấy vế với vế của phương trình (2) trừ (3) ta được: – 162b = 0 b = 0.

Khi đó:

(2) 6 561a + c = 0

(4) 5 041 a + c = 43

Từ đó ta có hệ phương trình: 6  561a+c=05  041a+c=43a0,03c185,6

Suy ra ta có phương trình: y = – 0,03x2 + 185,6.

Điểm H thuộc vào trục Oy nên xH = 0 yH = – 0,03.02 + 185,6 = 185,6.

Vì vậy chiều cao của cổng chính là đoạn OH và bằng 185,6 m.

Lời giải

Hướng dẫn giải

 
Media VietJack

Xét tam giác ABC, có:

 nên I thuộc vào đoạn thẳng BC và thỏa mãn IC = 2IB.

Áp dụng định lí cos trong tam giác ABC, ta được:

BC2 = AB2 + AC2 – 2AB.AC.cosA = a2+a322.a.a3.cos30°=a2

BC = a

AB = BC = a

Tam giác ABC cân tại B

 IB+2IC=0

Ta lại có IC = 2IB nên IC = 23a, IB = 13a

Xét tam giác IAC có:

Áp dụng định lí cos, ta được:

IA2 = AC2 + IC2 – 2.AC.IC.cos C^ a32+23a22.a3.23acos30°=139a2

C^=A^=30° IA = 133a.

Vậy IA = 133a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phát biểu nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho định lý “Hai góc đối đỉnh thì bằng nhau”. Mệnh đề nào sau đây đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay