Câu hỏi:
29/11/2022 4,907
Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị \(f'\left( 0 \right)\) bằng
Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị \(f'\left( 0 \right)\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn B.
\[f'\left( x \right) = \frac{1}{{{{\cos }^2}\left( {x - \frac{{2\pi }}{3}} \right)}} \Rightarrow f'\left( 0 \right) = \frac{1}{{\frac{1}{4}}} = 4\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn C.
Ta có:\(f\left( x \right) = \cos 2x \Rightarrow f'\left( x \right) = - 2\sin 2x\). Do đó \[f'\left( {\frac{\pi }{4}} \right) = - 2\]
Lời giải
Hướng dẫn giải:
Chọn A.
\(f'\left( x \right) = \frac{{ - \sin x.\left( {1 + 2\sin x} \right) - \cos x.2.\cos x}}{{{{\left( {1 + 2\sin x} \right)}^2}}} = \frac{{ - \sin x - 2}}{{{{\left( {1 + 2\sin x} \right)}^2}}}\)
\(f'\left( {\frac{\pi }{6}} \right) = \frac{{ - 5}}{8};f'\left( 0 \right) = - 2;f'\left( {\frac{\pi }{2}} \right) = \frac{{ - 1}}{3};f'\left( \pi \right) = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.