Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. Chứng minh tam giác GBC và tam giác GMN cân tại G.
Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. Chứng minh tam giác GBC và tam giác GMN cân tại G.
Quảng cáo
Trả lời:
Theo định lí về ba đường trung tuyến trong tam giác ta có:
GC = CN.
GB = BM.
Mà BM = CN (gt) nên GB = GC. Suy ra tam giác GBC cân tại G.
GN = CN – GC = BM – GB = GM. Suy ra tam giác GMN cân tại G.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Theo định lí về đường trung tuyến của tam giác, khi AM là trung tuyến, G là trọng tâm, ta có: .
Vậy chọn đáp án A.
Lời giải
AD là trung tuyến của tam giác ABC nên DB = DC.
Xét tam giác ADB và tam giác EDC
DB = DC.
DA = DE (gt).
= ( hai góc đối đỉnh).
Vậy tam giác ADB bằng tam giác EDC. Suy ra mà hai góc ở vị trí so le trong nên AB // CE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.