Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. Chứng minh tam giác ABC cân tại A.
Quảng cáo
Trả lời:

Theo định lí về ba đường trung tuyến trong tam giác ta có:
GC = CN.
GB = BM.
Mà BM = CN (gt) nên GB = GC. Suy ra tam giác GBC cân tại G, nên .
Xét tam giác NCB và tam giác MBC:
BM = CN (gt).
.
Cạnh chung BC.
Nên tam giác NCB bằng tam giác MBC theo trường hợp c.g.c.
Ta được (hai góc tương ứng) hay suy ra tam giác ABC cân tại A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Theo định lí về đường trung tuyến của tam giác, khi AM là trung tuyến, G là trọng tâm, ta có: .
Vậy chọn đáp án A.
Lời giải

AD là trung tuyến của tam giác ABC nên DB = DC.
Xét tam giác ADB và tam giác EDC
DB = DC.
DA = DE (gt).
= ( hai góc đối đỉnh).
Vậy tam giác ADB bằng tam giác EDC. Suy ra mà hai góc ở vị trí so le trong nên AB // CE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.