Câu hỏi:

13/07/2024 518

Cho tam giác ABC cân tại B, hai đường phân giác AD và CE cắt nhau tại O. Từ O kẻ đường thẳng OF vuông góc với AC ( F thuộc đoạn thẳng AC). Chứng minh BF cũng là đường phân gác của góc B.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Trong tam giác ABC, hai đường phân giác AD và CE cắt nhau tại O nên O là giao điểm ba đường phân giác của tam giác ABC ( tính chất ba đường phân giác của tam giác). Suy ra BO cũng là đường phân giác của tam giác ABC.

Kéo dài BO cắt AC tại F’ ta có ABF'^=CBF'^. Xét tam giác ABF’ và CBF’.

AB = CB ( do tam giác ABC cân tại B).

ABF'^=CBF'^.

Cạnh chung BF’.

Vậy tam giác ABF’ bằng tam giác CBF’ theo trường hợp c.g.c. Suy ra BF'A^=BF'C^ (hai góc tương ứng) BF'A^+BF'C^=180° nên BF'A^=BF'C^=90° hay BF’ AC hay OF’ AC.

Theo đề bài OF AC, nên F’ trùng với F.

Vậy BF cũng là đường phân giác của góc B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác DEF. Tia phân giác của góc D và E cắt nhau tại I. Qua I kẻ đường thẳng song song với EF, đường thẳng này cắt DE tại M, cắt DF tại N. Chứng minh rằng ME + NF = MN.

Xem đáp án » 13/07/2024 8,804

Câu 2:

Cho tam giác ABC cân tại A có BM, CN là hai đường phân giác. Chứng minh BM = CN.

Xem đáp án » 11/07/2024 4,934

Câu 3:

Vẽ ba tam giác nhọn, tù, vuông và với mỗi tam giác, vẽ ba đường phân giác của chúng.

Xem đáp án » 11/07/2024 3,657

Câu 4:

Khẳng định nào sau đây là đúng?

Xem đáp án » 06/12/2022 1,026

Câu 5:

Đảo giấu vàng. Trên hòn đảo có ba ngọn núi được xác định bởi ba điểm A, B, C. Vàng được dấu tại điểm nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Hãy xác định vị trí của nơi giấu vàng và giải thích vì sao.

Media VietJack

Xem đáp án » 13/07/2024 885

Câu 6:

Cho tam giác ABC như hình bên dưới. Kẻ đường tròn tâm A cắt AB tại M và AC tại N. Từ M và N kẻ hai cung tròn có cùng bán kính cắt nhau tại P. Đường thẳng AP cắt BC tại D. Chứng minh AD là đường phân giác của góc A.

Media VietJack

Xem đáp án » 06/12/2022 488
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua