Câu hỏi:

12/07/2024 279

Các nhà thiết kế đang xây dựng một phương án cho một khu công nghiệp. Trong khuôn viên này có bốn nhà máy tại bốn điểm A, B, C, D tạo thành một tứ giác. Người ta cần xây một nhà kho và đường đi để cung cấp nguyên liệu cho bốn nhà máy này. Hỏi nhà kho xây ở đâu để tổng khoảng cách tới bốn điểm A, B, C, D là bé nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi nơi xây nhà kho là điểm O. Ta có tổng khoảng cách tới 4 điểm A, B, C, D là:

OA + OB + OC + OD

Theo định lí về quan hệ giữa 3 cạnh của một tam giác:

OD + OB > BD.

OA + OC > AC.

OB + OD = BD và OA + OC = AC khi O là giao điểm của AC và BD.

Ta có OA + OB + OC + OD bé nhất bằng AC + BD khi O là giao điểm của AC và BD.

Vậy nhà kho xây ở điểm giao của AC và BD để tổng khoảng cách đến 4 nhà máy là bé nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Kéo dài AO cắt BC tại M.

Xét tam giác ACE và tam giác ABF.

AC = AB ( do tam giác ABC cân tại A)

AE = AF (gt)

Góc A chung

Vậy tam giác ACE bằng tam giác ABF theo trường hợp c.g.c. Suy ra CE = BF.

Xét tam giác ECB và tam giác FBC

EBC^=FCB^ ( do tam giác ABC cân tại A)

CE = BF

Cạnh chung BC

Vậy tam giác ECB bằng tam giác FBC theo trường hơpk c.g.c. Suy ra ECB^=FBC^ hay OCB^=OBC^ nên tam giác OBC cân tại O. Ta có OB = OC hay O nằm trên đường trung trực của BC (1).

AB = AC ( do tam giác ABC cân tại A) nên A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) suy ra AO là đường trung trực của BC.

Lời giải

Media VietJack

AH là đường cao của tam giác ABC nên AHB^=AHC^=90°.

AH là đường phân giác nên BAH^=CAH^.

Xét tam giác AHB và tam giác AHC.

BAH^=CAH^.

AHB^=AHC^=90°.

Cạnh chung AH.

Vậy tam giác AHB bằng tam giác AHC theo trường hợp g.c.g. Suy ra AB = AC hay tam giác ABC cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay