Câu hỏi:

13/07/2024 332

Trò chơi múc nước đổ vào thùng. Ba đội X, Y, Z cùng cắm trại tại ba địa điểm A, B, C. Nhiệm vụ của mỗi đội là múc nước từ một cái giếng để mang về đội của mình, đội nào múc được nhiều nước hơn sẽ thắng cuộc. Để cho công bằng, giếng nước phải xây tại một nơi mà khoảng cách tới ba địa điểm bằng nhau. Em hãy tìm chỗ đào giếng nước.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Ta kẻ đường trung trực của AB, AC. Điểm O là giao của hai đường trung trực của AB, AC. Suy ra O cũng là giao ba đường trung trực của tam giác ABC và điểm O cách đều 3 đỉnh của tam giác ABC hay OA = OB = OC. ( tính chất ba đường trung trực của tam giác).

Vậy điểm O chính là nơi cần tìm để đào giếng.

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Kéo dài AO cắt BC tại M.

Xét tam giác ACE và tam giác ABF.

AC = AB ( do tam giác ABC cân tại A)

AE = AF (gt)

Góc A chung

Vậy tam giác ACE bằng tam giác ABF theo trường hợp c.g.c. Suy ra CE = BF.

Xét tam giác ECB và tam giác FBC

EBC^=FCB^ ( do tam giác ABC cân tại A)

CE = BF

Cạnh chung BC

Vậy tam giác ECB bằng tam giác FBC theo trường hơpk c.g.c. Suy ra ECB^=FBC^ hay OCB^=OBC^ nên tam giác OBC cân tại O. Ta có OB = OC hay O nằm trên đường trung trực của BC (1).

AB = AC ( do tam giác ABC cân tại A) nên A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) suy ra AO là đường trung trực của BC.

Lời giải

Media VietJack

AH là đường cao của tam giác ABC nên AHB^=AHC^=90°.

AH là đường phân giác nên BAH^=CAH^.

Xét tam giác AHB và tam giác AHC.

BAH^=CAH^.

AHB^=AHC^=90°.

Cạnh chung AH.

Vậy tam giác AHB bằng tam giác AHC theo trường hợp g.c.g. Suy ra AB = AC hay tam giác ABC cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay