Câu hỏi:
22/12/2022 2,800
Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:
Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có \(\overrightarrow {AC} = \left( { - 3; - 4} \right)\).
Vì BH ⊥ AC nên BH nhận \(\overrightarrow {AC} = \left( { - 3; - 4} \right)\) làm vectơ pháp tuyến.
Đường cao BH đi qua điểm B(–6; –1) và có vectơ pháp tuyến \(\overrightarrow {AC} = \left( { - 3; - 4} \right)\).
Suy ra phương trình BH: –3(x + 6) – 4(y + 1) = 0.
⇔ –3x – 4y – 22 = 0.
⇔ 3x + 4y + 22 = 0.
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cách xếp 8 bạn học sinh vào hai dãy ghế có 8 ghế là hoán vị của 8 nên \(n\left( \Omega \right) = 8! = 40\,\,320\) cách xếp.
Gọi A là biến cố bất cứ hai học sinh nào ngồi đối diện nhau khác trường với nhau.
Ta có sơ đồ sau:
Dãy ghế thứ nhất |
1 |
2 |
3 |
4 |
Dãy ghế thứ hai |
5 |
6 |
7 |
8 |
Ở ghế 1: có 8 cách chọn học sinh ngồi vào ghế
Ở ghế 5: có 4 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 2: có 6 cách chọn học sinh ngồi vào ghế
Ở ghế 6: có 3 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 3: có 4 cách chọn học sinh ngồi vào ghế
Ở ghế 7: có 2 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 4: có 2 cách chọn học sinh ngồi vào ghế
Ở ghế 8: có 1 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Suy ra: n(A) = 8.4.6.3.4.2.2.1 = 9 216 cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.
Vì vậy \(P\left( A \right) = \frac{{9\,\,216}}{{40\,\,320}} = \frac{8}{{35}}\).
Lời giải
Đáp án đúng là: C
Ta có bảng tần số:
Điểm |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tần số |
3 |
3 |
2 |
5 |
9 |
8 |
4 |
3 |
2 |
1 |
Khi đó điểm trung bình của lớp 10A là:
\(\overline x = \frac{{1.3 + 2.3 + 3.2 + 4.5 + 5.9 + 6.8 + 7.4 + 8.3 + 9.2 + 10.2}}{{40}} = 5,45\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.