Câu hỏi:

22/12/2022 3,963

Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đường tròn (C) có tâm I(2; 2), bán kính R = 3.

Gọi d là tiếp tuyến cần tìm có vectơ pháp tuyến \(\vec n = \left( {A;B} \right)\).

Vì d đi qua điểm A(5; –1) nên phương trình d có dạng: A(x – 5) + B(y + 1) = 0.

Ax + By – 5A + B = 0.

Vì d là tiếp tuyến của (C) nên ta có d(I, d) = R.

\( \Leftrightarrow \frac{{\left| {A.2 + B.2 - 5A + B} \right|}}{{\sqrt {{A^2} + {B^2}} }} = 3\)

\( \Leftrightarrow \left| { - 3A + 3B} \right| = 3\sqrt {{A^2} + {B^2}} \)

9A2 – 18AB + 9B2 = 9(A2 + B2)

AB = 0.

A = 0 hoặc B = 0.

Với A = 0, ta chọn B = 1.

Suy ra phương trình d: y + 1 = 0 y = –1.

Với B = 0, ta chọn A = 1.

Suy ra phương trình d: x – 5 = 0 x = 5.

Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán có phương trình là: y = –1 hoặc x = 5.

Do đó ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cách xếp 8 bạn học sinh vào hai dãy ghế có 8 ghế là hoán vị của 8 nên \(n\left( \Omega \right) = 8! = 40\,\,320\) cách xếp.

Gọi A là biến cố bất cứ hai học sinh nào ngồi đối diện nhau khác trường với nhau.

Ta có sơ đồ sau:

Dãy ghế thứ nhất

1

2

3

4

Dãy ghế thứ hai

5

6

7

8

Ở ghế 1: có 8 cách chọn học sinh ngồi vào ghế

Ở ghế 5: có 4 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 2: có 6 cách chọn học sinh ngồi vào ghế

Ở ghế 6: có 3 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 3: có 4 cách chọn học sinh ngồi vào ghế

Ở ghế 7: có 2 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 4: có 2 cách chọn học sinh ngồi vào ghế

Ở ghế 8: có 1 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Suy ra: n(A) = 8.4.6.3.4.2.2.1 = 9 216 cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.

Vì vậy \(P\left( A \right) = \frac{{9\,\,216}}{{40\,\,320}} = \frac{8}{{35}}\).

Lời giải

Đáp án đúng là: C

Ta có bảng tần số:

Điểm

1

2

3

4

5

6

7

8

9

10

Tần số

3

3

2

5

9

8

4

3

2

1

Khi đó điểm trung bình của lớp 10A là:

\(\overline x = \frac{{1.3 + 2.3 + 3.2 + 4.5 + 5.9 + 6.8 + 7.4 + 8.3 + 9.2 + 10.2}}{{40}} = 5,45\).

Câu 3

Đường tròn tâm I(1; 4) và đi qua điểm B(2; 6) có phương trình là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay