Câu hỏi:

30/01/2023 2,208 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Áp dụng tính chất giao tuyến của hai mặt phẳng có 1 điểm chung và 2 cạnh song song với nhau.

Cách giải:

Ta thấy \(\left( {SAD} \right)\); \(\left( {SBC} \right)\) có điểm chung thứ nhất là S.

Ta có: \(\left\{ \begin{array}{l}AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\AD||BC\end{array} \right. \Rightarrow \) Giao tuyến của hai mặt phẳng là đường thẳng qua S và song song với AD, BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Sử dụng quy tắc nhân và cộng.

Cách giải:

Ta có \(8 = 2 + 6 = 3 + 5 = 4 + 4\)

Xác suất 1 lần tung là \(\frac{1}{6}\)

Nên gieo xúc sắc 2 lần thì sẽ có xác suất là \({\left( {\frac{1}{6}} \right)^2} = \frac{1}{{36}}\)

Với lần tung \(\left\{ {2;6} \right\}\); \(\left\{ {3;4} \right\}\) sẽ có 2 cách sắp xếp xuất hiện.

Do đó xác suất để thỏa mãn bài toán là \(\frac{1}{{36}}.2 + \frac{1}{{36}}.2 + \frac{1}{{36}} = \frac{5}{{36}}\)

Lời giải

Đáp án A

Phương pháp:

Sử dụng tỉ số và định lí Ta-lét.

Cách giải:

Media VietJack

Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).

Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.

Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)

Tương tự ta có \(NP = MP = 4\,cm\).

Do đó tam giác MNP là tam giác đều cạnh 4cm.

\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP