Câu hỏi:

30/01/2023 1,239

Cho các mệnh đề sau:

            \(\left( I \right)\): Hàm số \(y = \sin x\) có chu kì là \(\frac{\pi }{2}\).

            \(\left( {II} \right)\): Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

            \(\left( {III} \right)\): Đồ thị hàm số \(y = \cos x\) đối xứng qua trục tung.

            \(\left( {IV} \right)\): Hàm số \(y = \cot x\) đồng biến trên \(\left( { - \pi ;0} \right)\).

Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Nhận xét từng mệnh đề rồi kết luận.

Cách giải:

Hàm số \(y = \sin x\) có chu kỳ là \(2\pi \) nên I sai.

Hàm số \(y = \tan x\) xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\) nên II đúng.

Ta có hàm số \(y = \cos x\)\(y\left( x \right) = y\left( { - x} \right)\) nên đồ thị hàm số đối xứng với nhau qua trục tung nên III đúng.

Hàm số \(y = \cot x\) luôn nghịch biến trên R nên IV sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Sử dụng quy tắc nhân và cộng.

Cách giải:

Ta có \(8 = 2 + 6 = 3 + 5 = 4 + 4\)

Xác suất 1 lần tung là \(\frac{1}{6}\)

Nên gieo xúc sắc 2 lần thì sẽ có xác suất là \({\left( {\frac{1}{6}} \right)^2} = \frac{1}{{36}}\)

Với lần tung \(\left\{ {2;6} \right\}\); \(\left\{ {3;4} \right\}\) sẽ có 2 cách sắp xếp xuất hiện.

Do đó xác suất để thỏa mãn bài toán là \(\frac{1}{{36}}.2 + \frac{1}{{36}}.2 + \frac{1}{{36}} = \frac{5}{{36}}\)

Lời giải

Đáp án A

Phương pháp:

Sử dụng tỉ số và định lí Ta-lét.

Cách giải:

Media VietJack

Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).

Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.

Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)

Tương tự ta có \(NP = MP = 4\,cm\).

Do đó tam giác MNP là tam giác đều cạnh 4cm.

\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP