Câu hỏi:

30/01/2023 1,281 Lưu

Cho tập hợp \(A = \left\{ {0;1;2;3;4;5} \right\}\). Có thể lập bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau từ A.

A. 752.
B. 160.
C. 156.
D. 240.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Sử dụng quy tắc nhân và quy tắc cộng.

Cách giải:

Gọi số cần tìm là \(\overline {abcd} \) \(\left( {a \ne 0} \right)\)

Để số cần tìm là số chẵn thì \(d \in \left\{ {0;2;4} \right\}\)

+) \(d = 0\) khi đó:

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn.

Khi đó có \(5.4.3 = 60\) số thỏa mãn.

+) \(d \in \left\{ {2;4} \right\}\) khi đó

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn.

khi đó có \(4.4.3.2 = 96\) số thỏa mãn.

Vậy có tất cả \(60 + 96 = 156\) số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = - \frac{\pi }{6} + k2\pi \), \(k \in \mathbb{Z}\).
B. \(x = \frac{\pi }{6} + k\pi \), \(k \in \mathbb{Z}\).
C. \(x = - \frac{\pi }{6} + k\pi \), \(k \in \mathbb{Z}\).
D. \(x = - \frac{\pi }{3} + k2\pi \), \(k \in \mathbb{Z}\).

Lời giải

Đáp án C

Phương pháp:

Giải phương trình lượng giác đặc biệt: \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).

Cách giải:

\(\sin \left( {2x - \frac{\pi }{6}} \right) + 1 = 0 \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = - 1\)

\( \Leftrightarrow 2x - \frac{\pi }{6} = \frac{{ - \pi }}{2} + k2\pi \Leftrightarrow x = - \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\).

Lời giải

Đáp án A

Phương pháp:

Sử dụng tỉ số và định lí Ta-lét.

Cách giải:

Media VietJack

Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).

Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.

Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)

Tương tự ta có \(NP = MP = 4\,cm\).

Do đó tam giác MNP là tam giác đều cạnh 4cm.

\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)

Câu 3

A. \(\frac{{SQ}}{{SD}} = \frac{1}{4}\).
B. \(\frac{{SQ}}{{SD}} = \frac{1}{3}\).
C. \(\frac{{SQ}}{{SD}} = \frac{1}{5}\).
D. \(\frac{{SQ}}{{SD}} = \frac{6}{{25}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MI\); \(I = AB \cap CD\).
B. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MK\); \(K = MA \cap CD\).
C. \(\left( {ABM} \right) \cap \left( {SCD} \right) = ME\); \(E = MB \cap SC\).
D. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MF\); \(F = MA \cap SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP