Câu hỏi:

30/01/2023 661 Lưu

Làng Duyên Yên, xã Ngọc Thanh, huyện Kim Động, tỉnh Hưng Yên nổi tiếng với trò chơi dân gian đánh đu. Trong trò chơi này, khi người chơi nhún đều thì cây đu sẽ đưa người chơi dao động qua lại ở vị trí cân bằng. Nghiên cứu trò chơi này, người ta thấy rằng khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian \(t\)(\(t \ge 0\) và được tính bằng giây) bởi hệ thức \(h = \left| d \right|\) với \(d = 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right].\) Trong đó quy ước rằng \(d > 0\) khi vị trí cân bằng ở phía sau lưng người chơi đu và \(d < 0\) trong trường hợp trái lại. Tìm thời điểm đầu tiên sau 10 giây mà người chơi đu ở xa vị trí cân bằng nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Vị trí xa cân bằng nhất là ở biên nên cho \({h_{\max }}\), tìm t nhỏ nhất thỏa mãn.

Cách giải:

Vị trí xa vị trí cân bằng nhất nên ta có:

\(\left| {3\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right)} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = 1\\\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = - 1\end{array} \right.\)

\( \Leftrightarrow \sin \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = 0 \Leftrightarrow \frac{\pi }{3}\left( {2t - 1} \right) = k\pi \Leftrightarrow t = \frac{{3k + 1}}{2}\)

Vị trí sau giây thứ 10 nên: \(t > 10 \Rightarrow \frac{{3k + 1}}{2} > 10 \Leftrightarrow k > \frac{{19}}{3} \Leftrightarrow k \ge 7\) (Do \(k \in \mathbb{Z}\) ).

\(k \ge 7 \Rightarrow t \ge \frac{{3.7 + 1}}{2} = 11.\)

Vậy thời điểm đầu tiên sau 10 giây mà người chơi đu ở vị trí cân bằng nhất là giây thứ 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Ba mặt phẳng phân biệt đôi một cắt nhau thì các giao tuyến của chúng hoặc song song hoặc đồng quy.

Cách giải:

\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \gamma \right) \cap \left( \alpha \right) = {d_3}\end{array} \right\} \Rightarrow \left[ \begin{array}{l}{d_1}\parallel {d_2}\parallel {d_3}\\{d_1},{d_2},{d_3}\,\,dong\,\,quy\end{array} \right.\)

Lời giải

Phương pháp:

a) Xác định các điểm chung của hai mặt phẳng.

b) Chứng minh EF song song với một đường thẳng nằm trong mặt phẳng \(\left( {ABCD} \right)\)\(\left( {SBC} \right)\).

c) Tìm giao điểm của SB với một đường thẳng nằm trong \(\left( {CDE} \right)\) và tìm giao điểm cả SC với một đường thẳng nằm trong \(\left( {EFM} \right).\) Từ đó suy ra thiết diện.

d) Sử dụng công thức: \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}}.\)

Cách giải:

 

Media VietJack

a) * Tìm \(\left( {SAC} \right) \cap \left( {SBD} \right) = ?\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Trong \(\left( {ABCD} \right)\), gọi \(AC \cap BD = \left\{ O \right\}\) ta có:

\(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset SBD \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right) \Rightarrow O\) là điểm chung thứ hai.

Vậy \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO.\)

* Tìm \(\left( {SAD} \right) \cap \left( {SBC} \right) = ?.\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Ta có: \[\left\{ \begin{array}{l}\left( {SAD} \right) \supset AD\\\left( {SBC} \right) \supset BC\\AD\parallel BC\left( {gt} \right)\end{array} \right. \Rightarrow \left( {SAD} \right),\left( {SBC} \right)\] cắt nhau theo giao tuyến là đường thẳng qua S và song song với AD, BC.

Trong \(\left( {SAD} \right)\) kẻ đường thẳng d qua S và \(d\parallel AD\parallel BC \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = d.\)

b) Ta có: EF là đường trung bình của \(\Delta SAD\) nên \(EF\parallel AD\) (Tính chất đường trung bình của tam giác).

Mà \(AD \subset \left( {ABCD} \right) \Rightarrow EF\parallel \left( {ABCD} \right).\)

Ta có: \(EF\parallel AD\), mà \(AD\parallel BC\left( {gt} \right) \Rightarrow EF\parallel BC.\)

Lại có \(BC \subset \left( {SBC} \right) \Rightarrow EF\parallel \left( {SBC} \right).\)

c) Trong \(\left( {SAB} \right)\) gọi \(M = EK \cap SB\) ta có: \(\left\{ \begin{array}{l}M \in SB\\M \in EK \subset \left( {CDE} \right) \Rightarrow M \in \left( {CDE} \right)\end{array} \right. \Rightarrow M = SB \cap \left( {CDE} \right).\)

Trong \(\left( {SCD} \right)\) gọi \(N = FK \cap SC\) ta có: \(\left\{ \begin{array}{l}N \in SC\\N \in FK \subset \left( {EFM} \right) \Rightarrow M \in \left( {EFM} \right)\end{array} \right. \Rightarrow N = SC \cap \left( {EFM} \right).\)

Ta có: \(\left\{ \begin{array}{l}\left( {KEF} \right) \cap \left( {SAB} \right) = EM\\\left( {KEF} \right) \cap \left( {SBC} \right) = MN\\\left( {KEF} \right) \cap \left( {SCD} \right) = NF\\\left( {KEF} \right) \cap \left( {SAD} \right) = EF\end{array} \right. \Rightarrow \) Thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right)\) là tứ giác EMNF.

d) Áp dụng định lí Menelaus cho tam giác FKD ta có: \(\frac{{CD}}{{CK}}.\frac{{NK}}{{NF}}.\frac{{SF}}{{SD}} = 1.\)

Áp dụng định lí Ta-lét ta có: \(\frac{{KC}}{{KD}} = \frac{{BC}}{{AD}} = \frac{1}{2} \Rightarrow C\) là trung điểm của \(KD \Rightarrow \frac{{CK}}{{CD}} = 1.\)

F là trung điểm của \(SD\left( {gt} \right) \Rightarrow \frac{{SF}}{{SD}} = \frac{1}{2}.\)

\( \Rightarrow 1.\frac{{NK}}{{NF}}.\frac{1}{2} = 1 \Rightarrow \frac{{NK}}{{NF}} = 2.\)

Tương tự ta có: \(\frac{{MK}}{{ME}} = 2.\)

Suy ra \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP