Làng Duyên Yên, xã Ngọc Thanh, huyện Kim Động, tỉnh Hưng Yên nổi tiếng với trò chơi dân gian đánh đu. Trong trò chơi này, khi người chơi nhún đều thì cây đu sẽ đưa người chơi dao động qua lại ở vị trí cân bằng. Nghiên cứu trò chơi này, người ta thấy rằng khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian \(t\)(\(t \ge 0\) và được tính bằng giây) bởi hệ thức \(h = \left| d \right|\) với \(d = 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right].\) Trong đó quy ước rằng \(d > 0\) khi vị trí cân bằng ở phía sau lưng người chơi đu và \(d < 0\) trong trường hợp trái lại. Tìm thời điểm đầu tiên sau 10 giây mà người chơi đu ở xa vị trí cân bằng nhất.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Vị trí xa cân bằng nhất là ở biên nên cho \({h_{\max }}\), tìm t nhỏ nhất thỏa mãn.
Cách giải:
Vị trí xa vị trí cân bằng nhất nên ta có:
\(\left| {3\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right)} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = 1\\\cos \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = - 1\end{array} \right.\)
\( \Leftrightarrow \sin \left( {\frac{\pi }{3}\left( {2t - 1} \right)} \right) = 0 \Leftrightarrow \frac{\pi }{3}\left( {2t - 1} \right) = k\pi \Leftrightarrow t = \frac{{3k + 1}}{2}\)
Vị trí sau giây thứ 10 nên: \(t > 10 \Rightarrow \frac{{3k + 1}}{2} > 10 \Leftrightarrow k > \frac{{19}}{3} \Leftrightarrow k \ge 7\) (Do \(k \in \mathbb{Z}\) ).
\(k \ge 7 \Rightarrow t \ge \frac{{3.7 + 1}}{2} = 11.\)
Vậy thời điểm đầu tiên sau 10 giây mà người chơi đu ở vị trí cân bằng nhất là giây thứ 11.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Ba mặt phẳng phân biệt đôi một cắt nhau thì các giao tuyến của chúng hoặc song song hoặc đồng quy.
Cách giải:
\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \gamma \right) \cap \left( \alpha \right) = {d_3}\end{array} \right\} \Rightarrow \left[ \begin{array}{l}{d_1}\parallel {d_2}\parallel {d_3}\\{d_1},{d_2},{d_3}\,\,dong\,\,quy\end{array} \right.\)
Lời giải
Đáp án B
Phương pháp:
Sử dụng phương pháp buộc, coi cô dâu, chú rể là 1 người.
Cách giải:
Coi cô dâu, chú rể là 1 người, có \(2! = 2\) cách hoán đổi vị trí cô dâu và chú rể.
Sắp xếp 6 người được mời với 1 cặp cô dâu, chú rể có \(7!\) cách.
Suy ra có tất cả \(2.7!\) cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.