Câu hỏi:

30/01/2023 649

Cho hình vuông ABCD tâm I. Gọi M, N lần lượt là trung điểm của AD, DC. Phép tịnh tiến theo vectơ nào sau đây biến \(\Delta AMI\) thành \(\Delta MDN\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Phép tịnh tiến biến tam giác này thành tam giác kia là phép tịnh tiến biến mỗi đỉnh của tam giác này thành mỗi đỉnh tương ứng của tam giác kia.

Cách giải:

Media VietJack

Ta có: IN là đường trung bình của tam giác \(ACD \Rightarrow IN = \frac{1}{2}AD = AM.\)

\( \Rightarrow \overrightarrow {AM} = \overrightarrow {IN} = {T_{\overrightarrow {AM} }}\left( I \right) = N.\)

Dễ thấy \(\overrightarrow {AM} = \overrightarrow {MD} \Rightarrow {T_{\overrightarrow {AM} }}\left( M \right) = D\) và hiển nhiên \({T_{\overrightarrow {AM} }}\left( A \right) = M.\)

Vậy \({T_{\overrightarrow {AM} }}\left( {\Delta AMI} \right) = \Delta MDN.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Ba mặt phẳng phân biệt đôi một cắt nhau thì các giao tuyến của chúng hoặc song song hoặc đồng quy.

Cách giải:

\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \gamma \right) \cap \left( \alpha \right) = {d_3}\end{array} \right\} \Rightarrow \left[ \begin{array}{l}{d_1}\parallel {d_2}\parallel {d_3}\\{d_1},{d_2},{d_3}\,\,dong\,\,quy\end{array} \right.\)

Lời giải

Đáp án B

Phương pháp:

Sử dụng phương pháp buộc, coi cô dâu, chú rể là 1 người.

Cách giải:

Coi cô dâu, chú rể là 1 người, có \(2! = 2\) cách hoán đổi vị trí cô dâu và chú rể.

Sắp xếp 6 người được mời với 1 cặp cô dâu, chú rể có \(7!\) cách.

Suy ra có tất cả \(2.7!\) cách.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP