Câu hỏi:

30/01/2023 212

Tìm hệ số của \({x^5}\) trong khai triển \({\left( {1 + x} \right)^{11}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

- Dùng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}.} \)

- Xác định k ứng với số hạng chứa \({x^5}.\)

Cách giải:

Ta có: \({\left( {1 + x} \right)^{11}} = \sum\limits_{k \to 0}^{11} {C_{11}^k.{x^k}.} \)

Hệ số của số hạng chứa \({x^5}\) trong khai triển trên là \(C_{11}^5 = 462.\)

Chú ý: Phân biệt câu hỏi hệ số và số hạng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Ba mặt phẳng phân biệt đôi một cắt nhau thì các giao tuyến của chúng hoặc song song hoặc đồng quy.

Cách giải:

\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \gamma \right) \cap \left( \alpha \right) = {d_3}\end{array} \right\} \Rightarrow \left[ \begin{array}{l}{d_1}\parallel {d_2}\parallel {d_3}\\{d_1},{d_2},{d_3}\,\,dong\,\,quy\end{array} \right.\)

Lời giải

Đáp án B

Phương pháp:

Sử dụng phương pháp buộc, coi cô dâu, chú rể là 1 người.

Cách giải:

Coi cô dâu, chú rể là 1 người, có \(2! = 2\) cách hoán đổi vị trí cô dâu và chú rể.

Sắp xếp 6 người được mời với 1 cặp cô dâu, chú rể có \(7!\) cách.

Suy ra có tất cả \(2.7!\) cách.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP