Câu hỏi:
30/01/2023 391
Giải các phương trình sau:
a) \({\cos ^2}x - 3\cos x + 2 = 0.\)
b) \(\left( {2\cos x - 1} \right)\left( {2\sin x + \cos x} \right) = \sin 2x - \sin x.\)
Giải các phương trình sau:
a) \({\cos ^2}x - 3\cos x + 2 = 0.\)b) \(\left( {2\cos x - 1} \right)\left( {2\sin x + \cos x} \right) = \sin 2x - \sin x.\)
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
Đưa phương trình về dạng tích sau đó giải phương trình lượng giác cơ bản.
Cách giải:
a) \({\cos ^2}x - 3\cos x + 2 = 0.\)
\( \Leftrightarrow \left( {\cos x - 1} \right)\left( {\cos x - 2} \right) = 0\)
\( \Leftrightarrow \cos x = 1\) (do \(\cos x \le 1 \Rightarrow \cos x - 2 \le - 1 \ne 0\))
\( \Leftrightarrow x = k2\pi \left( {k \in \mathbb{Z}} \right).\)
b) \(\left( {2\cos x - 1} \right)\left( {2\sin x + \cos x} \right) = \sin 2x - \sin x.\)
\( \Leftrightarrow \left( {2\cos x - 1} \right)\left( {2\sin x + \cos x} \right) = 2\sin x.\cos x - \sin x\)
\( \Leftrightarrow \left( {2\cos x - 1} \right)\left( {2\sin x + \cos x} \right) = \sin x\left( {2\cos x - 1} \right)\)
\( \Leftrightarrow \left( {2\cos x - 1} \right)\left( {2\sin x + \cos x - \sin x} \right) = 0\)
\( \Leftrightarrow \left( {2\cos x - 1} \right)\left( {\sin x + \cos x} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\sin x = - \cos x\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm \frac{\pi }{3} + k2\pi \\\tan x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{4} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Ba mặt phẳng phân biệt đôi một cắt nhau thì các giao tuyến của chúng hoặc song song hoặc đồng quy.
Cách giải:
\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \gamma \right) \cap \left( \alpha \right) = {d_3}\end{array} \right\} \Rightarrow \left[ \begin{array}{l}{d_1}\parallel {d_2}\parallel {d_3}\\{d_1},{d_2},{d_3}\,\,dong\,\,quy\end{array} \right.\)
Lời giải
Đáp án B
Phương pháp:
Sử dụng phương pháp buộc, coi cô dâu, chú rể là 1 người.
Cách giải:
Coi cô dâu, chú rể là 1 người, có \(2! = 2\) cách hoán đổi vị trí cô dâu và chú rể.
Sắp xếp 6 người được mời với 1 cặp cô dâu, chú rể có \(7!\) cách.
Suy ra có tất cả \(2.7!\) cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.