Câu hỏi:

02/02/2023 129

Phép biến hình nào sau đây không là phép dời hình

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Theo định nghĩa: phép dời hình là phép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì.

+ Theo tính chất phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì nên loại.

+ Theo tính chất phép quay bảo toàn khoảng cách giữa hai điểm bất kì nên loại.

+ Theo tính chất phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kì nên loại.

+ Theo tính chất phép vị tự  tâm O tỉ số 3 là phép biến hình biến hai điểm M, N thành hai điểm M' và N' với M'N'=3.MN nên chọn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

 
Media VietJack

Đánh số ghế như hình vẽ. Khi đó, chúng ta tiến hành xếp chỗ cho 12 học sinh đó như sau:

+ Ghế 1-1 có thể xếp bất kì học sinh của lớp nào cũng được. Do đó có: 6 + 6 = 12( cách xếp).

+ Ghế 1-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 1-1. Do đó có 6 (cách xếp).

+ Ghế 2-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 2 học sinh đã được xếp chỗ. Do đó có: 12 - 2 = 10( cách xếp).

+ Ghế 2-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 2-1. Do đó có 5 (cách xếp).

+ Ghế 3-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 4 học sinh đã được xếp chỗ. Do đó có: 12- 4 = 8( cách xếp).

+ Ghế 3-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 3-1. Do đó có 4 (cách xếp).

+ Ghế 4-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 6 học sinh đã được xếp chỗ. Do đó có: 12 - 6 = 6( cách xếp).

+ Ghế 4-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 4-1. Do đó có 3 (cách xếp).

+ Ghế 5-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 8 học sinh đã được xếp chỗ. Do đó có: 12- 8 = 4( cách xếp).

+ Ghế 5-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 5-1. Do đó có 2 (cách xếp).

+ Ghế 6-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 10 học sinh đã được xếp chỗ. Do đó có: 12 - 10 = 2( cách xếp).

+ Ghế 6-2  chỉ có thể xếp học sinh của lớp chưa ngồi ở ghế 6-1. Do đó chỉ còn có  (cách xếp).

Vậy, theo qui tắc nhân số cách xếp để hai học sinh ngồi đối diện là khác lớp là:

12.6.10.5.8.4.6.3.4.2.2.1=33177600 (cách xếp)

Cách 2:

Xếp 6 học sinh lớp 11A vào dãy ghế thứ nhất thì có 6! cách xếp.

Xếp 6 học sinh lớp 11B vào dãy ghế thứ hai thì có 6! cách xếp.

Ở các cặp ghế đối diện nhau hai bạn học sinh lớp 11A và học sinh lớp 11B có thể đổi chỗ cho nhau nên có 26 cách xếp.

Vậy, số cách xếp để hai học sinh ngồi đối diện là khác lớp là:6!.6!.26=33177600(cách xếp).

Câu 2

Phương trình cot45°x=33 có họ nghiệm là

Lời giải

Chọn C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay