Câu hỏi:

03/02/2023 519 Lưu

Cho \[0 \le k \le n,k \in {\mathbb{N}^*},n \in {\mathbb{N}^*}.\] Số tổ hợp chập k của n phần tử được xác định bởi công thức nào sau đây?

A. \[\frac{{n!}}{{\left( {n - k} \right)!}}\]
B. \[k!\]
C. \[\frac{{n!}}{{k!}}\]
D. \[\frac{{n!}}{{k!\left( {n - k} \right)!}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng công thức tính tổ hợp.

Cách giải:

\[C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\]

Chú ý: Phân biệt chỉnh hợp \[A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\] và tổ hợp \[C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Sử dụng tổ hợp và quy tắc nhân.

Cách giải:

Số cách chọn ra 2 viên bi xanh là: \[C_6^2.\]

Số cách chọn ra 2 viên bi đỏ là: \[C_4^1.\]

Số cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ là \[C_6^2.C_4^1 = 60.\]

Lời giải

Phương pháp:

a) Xác định giao tuyến dựa vào yếu tố song song.

b) Chọn \[SC \subset \left( {SAC} \right),\] xác định giao tuyến \[\Delta = \left( {AMN} \right) \cap \left( {SAC} \right).\] Khi đó giao điểm của SC\[\left( {AMN} \right)\] chính là giao điểm của SC\[\Delta .\]

c) \[d||a \subset \left( P \right) \Rightarrow d||\left( P \right).\]

Cách giải:

Media VietJack

a) Xét \[\left( {SAB} \right)\]\[\left( {SCD} \right)\] có:

+ S là điểm chung thứ nhất.

+ \[\left\{ \begin{array}{l}\left( {SAB} \right) \supset AB\\\left( {SCD} \right) \supset CD\\AB||CD{\rm{ }}\left( {gt} \right)\end{array} \right. \Rightarrow \]Giao tuyến của \[\left( {SAB} \right),{\rm{ }}\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD.

Trong \[\left( {SAB} \right)\] kẻ đường thẳng d đi qua S\[d||AB||CD.\]

Vậy \[d = \left( {SAB} \right) \cap \left( {SCD} \right).\]

b) Chọn \[SC \subset \left( {SAC} \right),\] tìm giao tuyến của \[\left( {SAC} \right)\]\[\left( {AMN} \right).\]

+ A là điểm chung thứ nhất.

+ Trong \[\left( {SBD} \right)\] gọi \[I = MN \cap SO\] ta có: \[I \in SO \subset \left( {SAC} \right) \Rightarrow I \in \left( {SAC} \right).\]

Trong \[\left( {SAC} \right)\] gọi \[E = AI \cap SC\] ta có:

\[\left\{ \begin{array}{l}E \in AI \subset \left( {AMN} \right) \Rightarrow E \in \left( {AMN} \right)\\E \in SC\end{array} \right. \Rightarrow E = SC \cap \left( {AMN} \right).\]

c) Gọi K là trung điểm của SC.

G là trọng tâm tam giác SBC \[ \Rightarrow G \in BK\]\[\frac{{BG}}{{BK}} = \frac{2}{3}\] (Tính chất trọng tâm).

Do \[AB||CD{\rm{ }}\left( {gt} \right),\] áp dụng định lí Ta-lét ta có: \[\frac{{BO}}{{OD}} = \frac{{AB}}{{CD}} = 2 \Rightarrow \frac{{BO}}{{BD}} = \frac{2}{3}.\]

\[ \Rightarrow \frac{{BG}}{{BK}} = \frac{{BO}}{{BD}} = \frac{2}{3} \Rightarrow OG||DK\] (Định lí Ta-lét đảo).

\[DK \subset \left( {SCD} \right).\] Vậy \[OG||\left( {SCD} \right).\]

Câu 3

A. \[P\left( {A.B} \right) = \frac{1}{8}\]
B. \[P\left( {A.B} \right) = \frac{3}{4}\]
C. \[P\left( {A.B} \right) = \frac{1}{4}\]
D. \[P\left( {A.B} \right) = \frac{7}{8}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\]
B. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\]
C. \[D = \mathbb{R}\]
D. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[BD||\left( {MNK} \right)\]
B. \[SB||\left( {MNK} \right)\]
C. \[SC||\left( {MNK} \right)\]
D. \[SD||\left( {MNK} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP