Câu hỏi:

03/02/2023 188

Cho \[0 \le k \le n,k \in {\mathbb{N}^*},n \in {\mathbb{N}^*}.\] Số tổ hợp chập k của n phần tử được xác định bởi công thức nào sau đây?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng công thức tính tổ hợp.

Cách giải:

\[C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\]

Chú ý: Phân biệt chỉnh hợp \[A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\] và tổ hợp \[C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hộp đựng 10 viên bi khác nhau, trong đó có 6 viên bi xanh và 4 viên bi đỏ. Có bao nhiêu cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ?

Xem đáp án » 03/02/2023 4,331

Câu 2:

Tìm tập xác định D của hàm số \[y = \tan x?\]

Xem đáp án » 03/02/2023 3,137

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD\[AB = 2CD,\] O là giao điểm của ACBD. Gọi M, N là trung điểm của SB SD.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right).\]

b) Xác định giao điểm của SC\[\left( {AMN} \right).\]

c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]

Xem đáp án » 13/07/2024 2,548

Câu 4:

Khẳng định nào sau đây đúng?

Xem đáp án » 03/02/2023 1,402

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Mệnh đề nào sau đây đúng?

Xem đáp án » 03/02/2023 1,399

Câu 6:

Phương trình \[\cos x = \frac{1}{3}\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2\pi } \right)?\]

Xem đáp án » 03/02/2023 1,391

Câu 7:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và số đó chia hết cho 5?

Xem đáp án » 03/02/2023 926

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store