Câu hỏi:
03/02/2023 2,078
Phương trình \[\cos x = \frac{1}{3}\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2\pi } \right)?\]
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
- Giải phương trình lượng giác cơ bản: \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \left( {k \in \mathbb{Z}} \right).\]
- Tìm nghiệm thỏa mãn điều kiện.
Cách giải:
\[\cos x = \frac{1}{3} \Leftrightarrow x = \pm \arccos \frac{1}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\]
Xét họ nghiệm \[x = \arccos \frac{1}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\] ta có:
\[x \in \left( {0;2\pi } \right) \Rightarrow 0 < \arccos \frac{1}{3} + k2\pi < 2\pi \Leftrightarrow - 0,19 < k < 0,80.\]
Mà \[k \in \mathbb{Z} \Rightarrow k = 0 \Rightarrow x = \arccos \frac{1}{3}.\]
Xét họ nghiệm \[x = - \arccos \frac{1}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\] ta có:
\[x \in \left( {0;2\pi } \right) \Rightarrow 0 < - \arccos \frac{1}{3} + k2\pi < 2\pi \Leftrightarrow 0,19 < k < 1,19.\]
Mà \[k \in \mathbb{Z} \Rightarrow k = 1 \Rightarrow x = - \arccos \frac{1}{3} + 2\pi .\]
Vậy phương trình ban đầu có 2 nghiệm thỏa mãn điều kiện.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Sử dụng tổ hợp và quy tắc nhân.
Cách giải:
Số cách chọn ra 2 viên bi xanh là: \[C_6^2.\]
Số cách chọn ra 2 viên bi đỏ là: \[C_4^1.\]
Số cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ là \[C_6^2.C_4^1 = 60.\]
Lời giải
Đáp án A
Phương pháp:
A, B là hai biến cố độc lập thì \[P\left( {A.B} \right) = P\left( A \right).P\left( B \right).\]
Cách giải:
Vì A, B là hai biến cố độc lập thì \[P\left( {A.B} \right) = P\left( A \right).P\left( B \right) = \frac{1}{2}.\frac{1}{4} = \frac{1}{8}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.